Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,159 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
from pathlib import Path
import hydra
import numpy as np
import torch
import wandb
from dm_env import specs
import tools.utils as utils
from tools.logger import Logger
from tools.replay import ReplayBuffer, make_replay_loader
torch.backends.cudnn.benchmark = True
# os.environ['WANDB_API_KEY'] = 'local-1b6c1e2a2fd8d4c98b8c049eb2914dbceccd4b7c' # local-1b6c1e2a2fd8d4c98b8c049eb2914dbceccd4b7c
# os.environ['WANDB_BASE_URL'] = 'https://192.168.170.90:443'
# os.environ['REQUESTS_CA_BUNDLE'] = '/etc/ssl/certs/ca-certificates.crt'
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg):
cfg.obs_type = obs_type
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
cfg.num_expl_steps = num_expl_steps
return hydra.utils.instantiate(cfg)
def make_dreamer_agent(obs_space, action_spec, cur_config, cfg):
from copy import deepcopy
cur_config = deepcopy(cur_config)
del cur_config.agent
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec)
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
# create logger
self.logger = Logger(self.workdir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
# create envs
self.task = task = cfg.task
img_size = cfg.img_size
import envs.main as envs
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering)
# # create agent
self.agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent)
# get meta specs
meta_specs = self.agent.get_meta_specs()
# create replay buffer
data_specs = (self.train_env.obs_space,
self.train_env.act_space,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
# create data storage
self.replay_storage = ReplayBuffer(data_specs, meta_specs,
self.workdir / 'buffer',
length=cfg.batch_length, **cfg.replay,
device=cfg.device)
# create replay buffer
self.replay_loader = make_replay_loader(self.replay_storage,
cfg.batch_size,)
self._replay_iter = None
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
def eval(self):
import envs.main as envs
eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64,)
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
meta = self.agent.init_meta()
while eval_until_episode(episode):
time_step, dreamer_obs = eval_env.reset()
agent_state = None
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action, agent_state = self.agent.act(dreamer_obs,
meta,
self.global_step,
eval_mode=True,
state=agent_state)
time_step, dreamer_obs = eval_env.step(action)
total_reward += time_step.reward
step += 1
episode += 1
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', total_reward / episode)
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
def eval_imag_behavior(self,):
self.agent._backup_acting_behavior = self.agent._acting_behavior
self.agent._acting_behavior = self.agent._imag_behavior
self.eval()
self.agent._acting_behavior = self.agent._backup_acting_behavior
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames, self.cfg.action_repeat)
seed_until_step = utils.Until(self.cfg.num_seed_frames, self.cfg.action_repeat)
eval_every_step = utils.Every(self.cfg.eval_every_frames, self.cfg.action_repeat)
train_every_n_steps = max(self.cfg.train_every_actions // self.cfg.action_repeat, 1)
should_train_step = utils.Every(train_every_n_steps * self.cfg.action_repeat, self.cfg.action_repeat)
should_log_scalars = utils.Every(self.cfg.log_every_frames, self.cfg.action_repeat)
should_log_visual = utils.Every(self.cfg.visual_every_frames, self.cfg.action_repeat)
should_save_model = utils.Every(self.cfg.save_every_frames, self.cfg.action_repeat)
episode_step, episode_reward = 0, 0
time_step, dreamer_obs = self.train_env.reset()
agent_state = None
meta = self.agent.init_meta()
data = dreamer_obs
self.replay_storage.add(data, meta)
metrics = None
while train_until_step(self.global_step):
if time_step.last():
self._global_episode += 1
# wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
episode_frame = episode_step * self.cfg.action_repeat
with self.logger.log_and_dump_ctx(self.global_frame,
ty='train') as log:
log('fps', episode_frame / elapsed_time)
log('total_time', total_time)
log('episode_reward', episode_reward)
log('episode_length', episode_frame)
log('episode', self.global_episode)
log('buffer_size', len(self.replay_storage))
log('step', self.global_step)
if should_save_model(self.global_step):
# save last model
self.save_last_model()
# reset env
time_step, dreamer_obs = self.train_env.reset()
# Updating agent
agent_state = None # Resetting agent's latent state
meta = self.agent.init_meta()
data = dreamer_obs
self.replay_storage.add(data, meta)
episode_step = 0
episode_reward = 0
# try to evaluate
if eval_every_step(self.global_step):
if self.cfg.eval_modality == 'task':
self.eval()
if self.cfg.eval_modality == 'task_imag':
self.eval_imag_behavior()
if self.cfg.eval_modality == 'from_text':
self.logger.log('eval_total_time', self.timer.total_time(),
self.global_frame)
self.eval_from_text()
meta = self.agent.update_meta(meta, self.global_step, time_step)
# sample action
with torch.no_grad(), utils.eval_mode(self.agent):
if seed_until_step(self.global_step):
action = self.train_env.act_space['action'].sample()
if getattr(self.cfg, 'discrete_actions', False):
action = (action == np.max(action)).astype(np.float32) # one-hot
else:
action, agent_state = self.agent.act(dreamer_obs, # time_step.observation
meta,
self.global_step,
eval_mode=False,
state=agent_state)
# try to update the agent
if not seed_until_step(self.global_step):
if should_train_step(self.global_step):
# prof.step()
# Sampling data
batch_data = next(self.replay_iter)
if hasattr(self.agent, ' update_wm'):
state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step)
if hasattr(self.agent, "update_acting_behavior"):
metrics = self.agent.update_acting_behavior(state=state, outputs=outputs, metrics=metrics, data=batch_data)[1]
if hasattr(self.agent, "update_imag_behavior"):
metrics.update(self.agent.update_imag_behavior(state=state, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1])
else:
outputs, metrics = self.agent.update(batch_data, self.global_step)
if should_log_scalars(self.global_step):
self.logger.log_metrics(metrics, self.global_frame, ty='train')
if self.global_step > 0 and should_log_visual(self.global_step):
if hasattr(self.agent, 'report'):
with torch.no_grad(), utils.eval_mode(self.agent):
videos = self.agent.report(next(self.replay_iter))
self.logger.log_visual(videos, self.global_frame)
# take env step
time_step, dreamer_obs = self.train_env.step(action)
episode_reward += time_step.reward
data = dreamer_obs
if time_step.last():
if getattr(self.train_env, "accumulate", False):
assert not self.replay_storage._ongoing
# NOTE: this is ok as it comes right after adding to the repl
accumulated_data, accumulated_key = self.train_env.process_accumulate()
data[accumulated_key] = accumulated_data[-1]
self.replay_storage._ongoing_eps[0][accumulated_key][-len(accumulated_data[:-1]):] = accumulated_data[:-1]
self.replay_storage.add(data, meta)
episode_step += 1
self._global_step += 1
@utils.retry
def save_snapshot(self):
snapshot = self.get_snapshot_dir() / f'snapshot_{self.global_frame}.pt'
keys_to_save = ['agent', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def setup_wandb(self):
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name)
flat_cfg = utils.flatten_dict(cfg)
wandb.config.update(flat_cfg)
self.wandb_run_id = wandb.run.id
@utils.retry
def save_last_model(self):
snapshot = self.root_dir / 'last_snapshot.pt'
if snapshot.is_file():
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt"))
os.replace(snapshot, temp)
keys_to_save = ['agent', '_global_step', '_global_episode']
if self.cfg.use_wandb:
keys_to_save.append('wandb_run_id')
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def load_snapshot(self, snapshot_dir):
try:
snapshot = snapshot_dir / 'last_snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
except:
snapshot = snapshot_dir / 'second_last_snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
for k,v in payload.items():
setattr(self, k, v)
if k == 'wandb_run_id':
assert wandb.run is None
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must")
def get_snapshot_dir(self):
snap_dir = self.cfg.snapshot_dir
snapshot_dir = self.workdir / Path(snap_dir)
snapshot_dir.mkdir(exist_ok=True, parents=True)
return snapshot_dir
@hydra.main(config_path='.', config_name='collect_data')
def main(cfg):
from collect_data import Workspace as W
root_dir = Path.cwd()
cfg.workdir = str(root_dir)
workspace = W(cfg)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot(workspace.root_dir)
if cfg.use_wandb and wandb.run is None:
# otherwise it was resumed
workspace.setup_wandb()
workspace.train()
if __name__ == '__main__':
main()
|