Spaces:
Sleeping
Sleeping
File size: 21,479 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
from pathlib import Path
from collections import defaultdict
import hydra
import numpy as np
import torch
import wandb
from dm_env import specs
import tools.utils as utils
from tools.logger import Logger
from tools.replay import ReplayBuffer, make_replay_loader
torch.backends.cudnn.benchmark = True
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg):
cfg.obs_type = obs_type
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
cfg.num_expl_steps = num_expl_steps
return hydra.utils.instantiate(cfg)
def make_dreamer_agent(obs_space, action_spec, cur_config, cfg):
from copy import deepcopy
cur_config = deepcopy(cur_config)
if hasattr(cur_config, 'agent'):
del cur_config.agent
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec)
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None,):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
# create logger
self.logger = Logger(self.workdir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
# create envs
self.task = task = cfg.task
img_size = cfg.img_size
import envs.main as envs
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering)
# # create agent
sample_agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent)
# create replay buffer
data_specs = (self.train_env.obs_space,
self.train_env.act_space,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
if cfg.train_from_data:
# Loading replay buffer
if cfg.replay_from_wandb_project is not None:
api = wandb.Api()
project_name = cfg.replay_from_wandb_project
params2search = {
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot,
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot,
}
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}")
found = False
for run in runs:
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]):
found = True
found_path = Path(run.config['workdir'].replace('/code', ''))
break
if not found:
raise Exception("Replay from wandb buffer not found")
replay_dir = found_path / 'code' / 'buffer'
else:
replay_dir = Path(cfg.replay_load_dir)
# create data storage
self.replay_storage = ReplayBuffer(data_specs, [],
replay_dir,
length=cfg.batch_length, **cfg.replay,
device=cfg.device, ignore_extra_keys=True, load_recursive=True)
print('Loaded ', self.replay_storage._loaded_episodes, 'episodes from ', str(replay_dir))
# create replay buffer
self.replay_loader = make_replay_loader(self.replay_storage,
cfg.batch_size,)
self._replay_iter = None
# Loading snapshot
if cfg.snapshot_from_wandb_project is not None:
api = wandb.Api()
project_name = cfg.snapshot_from_wandb_project
params2search = {
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot,
"agent_name" : cfg.agent.name if cfg.agent_name_snapshot is None else cfg.agent_name_snapshot,
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot,
}
if cfg.agent.clip_lafite_noise > 0.:
params2search['clip_lafite_noise'] = cfg.agent.clip_lafite_noise
if cfg.agent.clip_add_noise > 0.:
params2search['clip_add_noise'] = cfg.agent.clip_add_noise
if cfg.reset_connector:
del params2search['clip_add_noise']
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}")
found = False
for run in runs:
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]):
found = True
found_path = Path(run.config['workdir'].replace('/code', ''))
break
if not found:
raise Exception("Snapshot from wandb not found")
if cfg.snapshot_step is None:
snapshot_dir = found_path / 'code' / 'last_snapshot.pt'
else:
snapshot_dir = found_path / 'code' / f'snapshot_{cfg.snapshot_step}.pt'
elif cfg.snapshot_load_dir is not None:
snapshot_dir = Path(cfg.snapshot_load_dir)
else:
snapshot_dir = None
if snapshot_dir is not None:
self.load_snapshot(snapshot_dir, resume=False)
if self.cfg.reset_world_model:
self.agent.wm = sample_agent.wm
# To reset optimization
from agent import dreamer_utils as common
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp)
if self.cfg.reset_connector:
self.agent.wm.connector = sample_agent.wm.connector
# To reset optimization
from agent import dreamer_utils as common
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp)
# overwriting cfg
self.agent.cfg = sample_agent.cfg
self.agent.wm.cfg = sample_agent.wm.cfg
if self.cfg.reset_imag_behavior:
self.agent.instantiate_imag_behavior()
else:
self.agent = sample_agent
self.eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64, )
if hasattr(self.eval_env, 'eval_mode'):
self.eval_env.eval_mode()
eval_specs = (self.eval_env.obs_space,
self.eval_env.act_space,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
self.eval_storage = ReplayBuffer(eval_specs, {},
self.workdir / 'eval_buffer',
length=cfg.batch_length, **cfg.replay,
device=cfg.device, ignore_extra_keys=True,)
self.eval_storage._minlen = 1
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
def eval(self):
import envs.main as envs
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
episode_reward = []
while eval_until_episode(len(episode_reward)):
if len(episode_reward) > 0 and self.global_step == 0:
return
episode_reward.append(0)
step, episode = 0, defaultdict(list)
meta = self.agent.init_meta()
time_step, dreamer_obs = self.eval_env.reset()
data = dreamer_obs
if 'clip_video' in data:
del data['clip_video']
self.eval_storage.add(data, meta)
agent_state = None
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action, agent_state = self.agent.act(dreamer_obs,
meta,
self.global_step,
eval_mode=True,
state=agent_state)
time_step, dreamer_obs = self.eval_env.step(action)
for k in dreamer_obs:
episode[k].append(dreamer_obs[k])
episode_reward[-1] += time_step.reward
if time_step.last():
if episode_reward[-1] == np.max(episode_reward):
best_episode = {**episode}
if episode_reward[-1] == np.min(episode_reward):
worst_episode = {**episode}
data = dreamer_obs
if 'clip_video' in data:
del data['clip_video']
self.eval_storage.add(data, meta)
step += 1
if self.global_step > 0 and self.global_frame % self.cfg.log_episodes_every_frames == 0:
# B, T, C, H, W = video.shape
videos = {'best_episode' : np.stack(best_episode['observation'], axis=0),
'worst_episode' : np.stack(worst_episode['observation'], axis=0),}
self.logger.log_visual(videos, self.global_frame)
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', np.mean(episode_reward))
log('episode_length', step * self.cfg.action_repeat)
log('episode', self.global_episode)
log('step', self.global_step)
def eval_imag_behavior(self,):
self.agent._backup_acting_behavior = self.agent._acting_behavior
self.agent._acting_behavior = self.agent._imag_behavior
self.eval()
self.agent._acting_behavior = self.agent._backup_acting_behavior
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames, 1)
eval_every_step = utils.Every(self.cfg.eval_every_frames, 1)
should_log_scalars = utils.Every(self.cfg.log_every_frames, 1)
should_save_model = utils.Every(self.cfg.save_every_frames, 1)
should_log_visual = utils.Every(self.cfg.visual_every_frames, 1)
metrics = None
while train_until_step(self.global_step):
# try to evaluate
if eval_every_step(self.global_step):
if self.cfg.eval_modality == 'task':
self.eval()
if self.cfg.eval_modality == 'task_imag':
self.eval_imag_behavior()
if self.cfg.eval_modality == 'from_text':
self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame)
self.eval_from_text()
if self.cfg.train_from_data:
# Sampling data
batch_data = next(self.replay_iter)
if self.cfg.train_world_model:
state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step)
else:
with torch.no_grad():
outputs, metrics = self.agent.wm.observe_data(batch_data,)
if self.cfg.train_connector:
_, metrics = self.agent.wm.update_additional_detached_modules(batch_data, outputs, metrics)
else:
imag_warmup_steps = self.cfg.imag_warmup_steps
metrics, batch_data = {}, None
with torch.no_grad():
# fake actions
mix = self.cfg.mix_random_actions
random = False
# num warmup steps
if mix:
init = self.agent.wm.rssm.initial(self.cfg.batch_size * (self.cfg.batch_length // 2))
else:
init = self.agent.wm.rssm.initial(self.cfg.batch_size * self.cfg.batch_length)
unif_dist = self.agent.wm.rssm.get_unif_dist(init)
if 'logit' in init:
init['logit'] = unif_dist.mean
else:
init['mean'] = unif_dist.mean
init['std'] = unif_dist.std
init['stoch'] = unif_dist.sample()
if self.cfg.start_from_video in [True, 'mix']:
T = self.agent.wm.connector.n_frames * 2 # should this be an hyperparam?
B = init['deter'].shape[0] // T
text_feat_dim = self.agent.wm.connector.viclip_emb_dim
video_embed = torch.randn((B, T, text_feat_dim), device=self.agent.device)
video_embed = torch.nn.functional.normalize(video_embed, dim=-1)
# Get initial state
video_init = self.agent.wm.connector.video_imagine(video_embed, dreamer_init=None, sample=True, reset_every_n_frames=False, denoise=True)
video_init = { k : v.reshape(B * T, *v.shape[2:]) for k, v in video_init.items()}
if self.cfg.start_from_video == 'mix':
probs = torch.rand((B * T, 1,1), device=init['stoch'].device) > 0.5 # should this be an hyperparam?
init['stoch'] = (probs * init['stoch']) + ( (~probs) * video_init['stoch'] )
else:
init['stoch'] = video_init['stoch']
if random:
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1
post = self.agent.wm.rssm.imagine(fake_action, init, sample=True)
post = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() }
elif mix:
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length // 2, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1
post1 = self.agent.wm.rssm.imagine(fake_action, init, sample=True)
post1 = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post1.items() }
init2 = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[1:])) for k,v in init.items() }
post2 = self.agent.wm.imagine(self.agent._imag_behavior.actor, init2, None, imag_warmup_steps)
post2 = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post2.items() }
post = { k: torch.cat([post1[k], post2[k]], dim=1) for k in post1 }
else:
init = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[1:])) for k,v in init.items() }
post = self.agent.wm.imagine(self.agent._imag_behavior.actor, init, None, imag_warmup_steps)
post = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() }
is_terminal = torch.zeros(self.cfg.batch_size, self.cfg.batch_length, device=self.agent.device)
outputs = dict(post=post, is_terminal=is_terminal)
if getattr(self.cfg.agent, 'imag_reward_fn', None) is not None:
metrics.update(self.agent.update_imag_behavior(state=None, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1])
if self.global_step > 0:
if should_log_scalars(self.global_step):
if hasattr(self, 'replay_storage'):
metrics.update(self.replay_storage.stats)
self.logger.log_metrics(metrics, self.global_frame, ty='train')
if should_log_visual(self.global_step) and self.cfg.train_from_data and hasattr(self.agent, 'report'):
with torch.no_grad(), utils.eval_mode(self.agent):
videos = self.agent.report(next(self.replay_iter))
self.logger.log_visual(videos, self.global_frame)
if should_log_scalars(self.global_step):
elapsed_time, total_time = self.timer.reset()
with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log:
log('fps', self.cfg.log_every_frames / elapsed_time)
log('step', self.global_step)
if 'model_loss' in metrics:
log('episode_reward', metrics['model_loss'].item())
# save last model
if should_save_model(self.global_step):
self.save_last_model()
self._global_step += 1
# == 1000 is to make sure everything is going well since the start
if (self.global_frame == 1000) or (self.global_frame % self.cfg.snapshot_every_frames == 0):
self.save_snapshot()
@utils.retry
def save_snapshot(self):
snapshot = self.root_dir / f'snapshot_{self.global_frame}.pt'
keys_to_save = ['agent', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def setup_wandb(self):
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name)
flat_cfg = utils.flatten_dict(cfg)
wandb.config.update(flat_cfg)
self.wandb_run_id = wandb.run.id
@utils.retry
def save_last_model(self):
snapshot = self.root_dir / 'last_snapshot.pt'
if snapshot.is_file():
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt"))
os.replace(snapshot, temp)
keys_to_save = ['agent', '_global_step', '_global_episode']
if self.cfg.use_wandb:
keys_to_save.append('wandb_run_id')
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
@utils.retry
def load_snapshot(self, snapshot_dir, resume=True):
print('Loading snapshot from: ', str(snapshot_dir))
try:
snapshot = snapshot_dir / 'last_snapshot.pt' if resume else snapshot_dir
with snapshot.open('rb') as f:
payload = torch.load(f)
except:
snapshot = Path(str(snapshot_dir).replace('last_snapshot', 'second_last_snapshot'))
with snapshot.open('rb') as f:
payload = torch.load(f)
if type(payload) != dict:
self.agent = payload
self.agent.requires_grad_(requires_grad=False)
return
for k,v in payload.items():
setattr(self, k, v)
if k == 'wandb_run_id' and resume:
assert wandb.run is None
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must")
def get_snapshot_dir(self):
snap_dir = self.cfg.snapshot_dir
snapshot_dir = self.workdir / Path(snap_dir)
snapshot_dir.mkdir(exist_ok=True, parents=True)
return snapshot_dir
def start_training(cfg, savedir, workdir):
from train import Workspace as W
root_dir = Path.cwd()
cfg.workdir = str(root_dir)
workspace = W(cfg, savedir, workdir)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot(workspace.root_dir)
if cfg.use_wandb and wandb.run is None:
# otherwise it was resumed
workspace.setup_wandb()
workspace.train()
@hydra.main(config_path='.', config_name='train')
def main(cfg):
start_training(cfg, None, None)
if __name__ == '__main__':
main()
|