File size: 12,195 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""Environments using kitchen and Franka robot."""
import logging
import sys
from pathlib import Path
sys.path.append((Path(__file__).parent.parent / 'third_party' / 'relay-policy-learning' / 'adept_envs').__str__())  
import adept_envs
from adept_envs.franka.kitchen_multitask_v0 import KitchenTaskRelaxV1
import os
import numpy as np
from dm_control.mujoco import engine

OBS_ELEMENT_INDICES = {
    "bottom burner": np.array([11, 12]),
    "top burner": np.array([15, 16]),
    "light switch": np.array([17, 18]),
    "slide cabinet": np.array([19]),
    "hinge cabinet": np.array([20, 21]),
    "microwave": np.array([22]),
    "kettle": np.array([23, 24, 25, 26, 27, 28, 29]),
}
OBS_ELEMENT_GOALS = {
    "bottom burner": np.array([-0.88, -0.01]),
    "top burner": np.array([-0.92, -0.01]),
    "light switch": np.array([-0.69, -0.05]),
    "slide cabinet": np.array([0.37]),
    "hinge cabinet": np.array([0.0, 1.45]),
    "microwave": np.array([-0.75]),
    "kettle": np.array([-0.23, 0.75, 1.62, 0.99, 0.0, 0.0, -0.06]),
}
BONUS_THRESH = 0.3

logging.basicConfig(
    level="INFO",
    format="%(asctime)s [%(levelname)s] %(message)s",
    filemode="w",
)
logger = logging.getLogger()

XPOS_NAMES = {
    "light switch" : "lightswitchroot",
    "slide cabinet" : "slidelink",
    "microwave" : "microdoorroot",
    "kettle" : "kettle",
}

class KitchenBase(KitchenTaskRelaxV1):
    # A string of element names. The robot's task is then to modify each of
    # these elements appropriately.
    TASK_ELEMENTS = []
    ALL_TASKS = [
        "bottom burner",
        "top burner",
        "light switch",
        "slide cabinet",
        "hinge cabinet",
        "microwave",
        "kettle",
    ]
    REMOVE_TASKS_WHEN_COMPLETE = True
    TERMINATE_ON_TASK_COMPLETE = True
    TERMINATE_ON_WRONG_COMPLETE = False
    COMPLETE_IN_ANY_ORDER = (
        True  # This allows for the tasks to be completed in arbitrary order.
    )
    GRIPPER_DISTANCE_REW = False

    def __init__(
        self, dense=True, dataset_url=None, ref_max_score=None, ref_min_score=None, **kwargs
    ):
        self.tasks_to_complete = list(self.TASK_ELEMENTS)
        self.goal_masking = True
        self.dense = dense
        self.use_grasp_rewards = False

        super(KitchenBase, self).__init__(**kwargs)

    def set_goal_masking(self, goal_masking=True):
        """Sets goal masking for goal-conditioned approaches (like RPL)."""
        self.goal_masking = goal_masking

    def _get_task_goal(self, task=None, actually_return_goal=False):
        if task is None:
            task = ["microwave", "kettle", "bottom burner", "light switch"]
        new_goal = np.zeros_like(self.goal)
        if self.goal_masking and not actually_return_goal:
            return new_goal
        for element in task:
            element_idx = OBS_ELEMENT_INDICES[element]
            element_goal = OBS_ELEMENT_GOALS[element]
            new_goal[element_idx] = element_goal

        return new_goal

    def reset_model(self):
        self.tasks_to_complete = list(self.TASK_ELEMENTS)
        return super(KitchenBase, self).reset_model()

    def _get_reward_n_score(self, obs_dict):
        reward_dict, score = super(KitchenBase, self)._get_reward_n_score(obs_dict)
        next_q_obs = obs_dict["qp"]
        next_obj_obs = obs_dict["obj_qp"]
        idx_offset = len(next_q_obs)
        completions = []
        dense = 0
        if self.GRIPPER_DISTANCE_REW:
            assert len(self.tasks_to_complete) == 1
            element = next(iter(self.tasks_to_complete))
            gripper_pos = (self.sim.named.data.xpos['panda0_leftfinger'] + self.sim.named.data.xpos['panda0_rightfinger']) / 2
            object_pos = self.sim.named.data.xpos[XPOS_NAMES[element]]
            gripper_obj_dist = np.linalg.norm(object_pos - gripper_pos)
            if self.dense:
                reward_dict["bonus"] = -gripper_obj_dist
                reward_dict["r_total"] = -gripper_obj_dist
                score = -gripper_obj_dist
            else:
                reward_dict["bonus"] = gripper_obj_dist < 0.15 
                reward_dict["r_total"] = gripper_obj_dist < 0.15
                score = gripper_obj_dist < 0.15               
            return reward_dict, score
        for element in self.tasks_to_complete:
            element_idx = OBS_ELEMENT_INDICES[element]
            distance = np.linalg.norm(
                next_obj_obs[..., element_idx - idx_offset] - OBS_ELEMENT_GOALS[element]
            )
            dense += -1 * distance  # reward must be negative distance for RL
            is_grasped = True
            if not self.initializing and self.use_grasp_rewards:
                if element == "slide cabinet":
                    is_grasped = False
                    for i in range(1, 6):
                        obj_pos = self.get_site_xpos("schandle{}".format(i))
                        left_pad = self.get_site_xpos("leftpad")
                        right_pad = self.get_site_xpos("rightpad")
                        within_sphere_left = np.linalg.norm(obj_pos - left_pad) < 0.07
                        within_sphere_right = np.linalg.norm(obj_pos - right_pad) < 0.07
                        right = right_pad[0] < obj_pos[0]
                        left = obj_pos[0] < left_pad[0]
                        if (
                            right
                            and left
                            and within_sphere_right
                            and within_sphere_left
                        ):
                            is_grasped = True
                if element == "top left burner":
                    is_grasped = False
                    obj_pos = self.get_site_xpos("tlbhandle")
                    left_pad = self.get_site_xpos("leftpad")
                    right_pad = self.get_site_xpos("rightpad")
                    within_sphere_left = np.linalg.norm(obj_pos - left_pad) < 0.035
                    within_sphere_right = np.linalg.norm(obj_pos - right_pad) < 0.04
                    right = right_pad[0] < obj_pos[0]
                    left = obj_pos[0] < left_pad[0]
                    if within_sphere_right and within_sphere_left and right and left:
                        is_grasped = True
                if element == "microwave":
                    is_grasped = False
                    for i in range(1, 6):
                        obj_pos = self.get_site_xpos("mchandle{}".format(i))
                        left_pad = self.get_site_xpos("leftpad")
                        right_pad = self.get_site_xpos("rightpad")
                        within_sphere_left = np.linalg.norm(obj_pos - left_pad) < 0.05
                        within_sphere_right = np.linalg.norm(obj_pos - right_pad) < 0.05
                        if (
                            right_pad[0] < obj_pos[0]
                            and obj_pos[0] < left_pad[0]
                            and within_sphere_right
                            and within_sphere_left
                        ):
                            is_grasped = True
                if element == "hinge cabinet":
                    is_grasped = False
                    for i in range(1, 6):
                        obj_pos = self.get_site_xpos("hchandle{}".format(i))
                        left_pad = self.get_site_xpos("leftpad")
                        right_pad = self.get_site_xpos("rightpad")
                        within_sphere_left = np.linalg.norm(obj_pos - left_pad) < 0.06
                        within_sphere_right = np.linalg.norm(obj_pos - right_pad) < 0.06
                        if (
                            right_pad[0] < obj_pos[0]
                            and obj_pos[0] < left_pad[0]
                            and within_sphere_right
                        ):
                            is_grasped = True
                if element == "light switch":
                    is_grasped = False
                    for i in range(1, 4):
                        obj_pos = self.get_site_xpos("lshandle{}".format(i))
                        left_pad = self.get_site_xpos("leftpad")
                        right_pad = self.get_site_xpos("rightpad")
                        within_sphere_left = np.linalg.norm(obj_pos - left_pad) < 0.045
                        within_sphere_right = np.linalg.norm(obj_pos - right_pad) < 0.03
                        if within_sphere_right and within_sphere_left:
                            is_grasped = True
            complete = distance < BONUS_THRESH #  and is_grasped
            if complete:
                completions.append(element)
        if self.REMOVE_TASKS_WHEN_COMPLETE:
            [self.tasks_to_complete.remove(element) for element in completions]
        bonus = float(len(completions))
        reward_dict["bonus"] = bonus
        reward_dict["r_total"] = bonus
        if self.dense:
            reward_dict["r_total"] = dense
        score = bonus
        return reward_dict, score

    def step(self, a, b=None):
        obs, reward, done, env_info = super(KitchenBase, self).step(a, b=b)
        if self.TERMINATE_ON_TASK_COMPLETE:
            done = not self.tasks_to_complete
        if self.TERMINATE_ON_WRONG_COMPLETE:
            all_goal = self._get_task_goal(task=self.ALL_TASKS)
            for wrong_task in list(set(self.ALL_TASKS) - set(self.TASK_ELEMENTS)):
                element_idx = OBS_ELEMENT_INDICES[wrong_task]
                distance = np.linalg.norm(obs[..., element_idx] - all_goal[element_idx])
                complete = distance < BONUS_THRESH
                if complete:
                    done = True
                    break
        env_info["completed_tasks"] = set(self.TASK_ELEMENTS) - set(
            self.tasks_to_complete
        )
        return obs, reward, done, env_info

    def get_goal(self):
        """Loads goal state from dataset for goal-conditioned approaches (like RPL)."""
        raise NotImplementedError

    def _split_data_into_seqs(self, data):
        """Splits dataset object into list of sequence dicts."""
        seq_end_idxs = np.where(data["terminals"])[0]
        start = 0
        seqs = []
        for end_idx in seq_end_idxs:
            seqs.append(
                dict(
                    states=data["observations"][start : end_idx + 1],
                    actions=data["actions"][start : end_idx + 1],
                )
            )
            start = end_idx + 1
        return seqs
    
    def render(self, mode='rgb_array', resolution=(64,64)):
        if mode =='rgb_array':
            camera = engine.MovableCamera(self.sim, *resolution)
            camera.set_pose(distance=2.2, lookat=[-0.2, .5, 2.], azimuth=70, elevation=-35)
            img = camera.render()
            return img
        else:
            super(KitchenTaskRelaxV1, self).render()


class KitchenSlideV0(KitchenBase):
    TASK_ELEMENTS = ["slide cabinet",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenHingeV0(KitchenBase):
    TASK_ELEMENTS = ["hinge cabinet",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenLightV0(KitchenBase):
    TASK_ELEMENTS = ["light switch",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenKettleV0(KitchenBase):
    TASK_ELEMENTS = ["kettle",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenMicrowaveV0(KitchenBase):
    TASK_ELEMENTS = ["microwave",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenBurnerV0(KitchenBase):
    TASK_ELEMENTS = ["bottom burner",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenTopBurnerV0(KitchenBase):
    TASK_ELEMENTS = ["top burner",]
    COMPLETE_IN_ANY_ORDER = False

class KitchenMicrowaveKettleBottomBurnerLightV0(KitchenBase):
    TASK_ELEMENTS = ["microwave", "kettle", "bottom burner", "light switch"]
    COMPLETE_IN_ANY_ORDER = False


class KitchenMicrowaveKettleLightSliderV0(KitchenBase):
    TASK_ELEMENTS = ["microwave", "kettle", "light switch", "slide cabinet"]
    COMPLETE_IN_ANY_ORDER = False


class KitchenKettleMicrowaveLightSliderV0(KitchenBase):
    TASK_ELEMENTS = ["kettle", "microwave", "light switch", "slide cabinet"]
    COMPLETE_IN_ANY_ORDER = False


class KitchenAllV0(KitchenBase):
    TASK_ELEMENTS = KitchenBase.ALL_TASKS