Spaces:
Sleeping
Sleeping
File size: 22,835 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import os
import numpy as np
from dm_control.rl import control
from dm_control.suite import common
from dm_control.suite import walker
from dm_control.utils import rewards
from dm_control.utils import io as resources
_TASKS_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'custom_dmc_tasks')
_YOGA_STAND_HEIGHT = 1.0 # lower than stan height = 1.2
_YOGA_LIE_DOWN_HEIGHT = 0.1
_YOGA_LEGS_UP_HEIGHT = 1.1
_YOGA_FEET_UP_HEIGHT = 0.5
_YOGA_FEET_UP_LIE_DOWN_HEIGHT = 0.35
_YOGA_KNEE_HEIGHT = 0.25
_YOGA_KNEESTAND_HEIGHT = 0.75
_YOGA_SITTING_HEIGHT = 0.55
_YOGA_SITTING_LEGS_HEIGHT = 0.15
# speed from: https://github.com/rll-research/url_benchmark/blob/710c3eb/custom_dmc_tasks/walker.py
_SPIN_SPEED = 5.0
#
class WalkerYogaPoses:
"""
Joint positions for some yoga poses
"""
lie_back = [ -1.2 , 0. , -1.57, 0, 0. , 0.0, 0, -0., 0.0]
lie_front = [-1.2, -0, 1.57, 0, -0.2, 0, 0, -0.2, 0.]
legs_up = [ -1.24 , 0. , -1.57, 1.57, 0. , 0.0, 1.57, -0., 0.0]
kneel = [ -0.5 , 0. , 0, 0, -1.57, -0.8, 1.57, -1.57, 0.0]
side_angle = [ -0.3 , 0. , 0.9, 0, 0, -0.7, 1.87, -1.07, 0.0]
stand_up = [-0.15, 0., 0.34, 0.74, -1.34, -0., 1.1, -0.66, -0.1]
lean_back = [-0.27, 0., -0.45, 0.22, -1.5, 0.86, 0.6, -0.8, -0.4]
boat = [ -1.04 , 0. , -0.8, 1.6, 0. , 0.0, 1.6, -0., 0.0]
bridge = [-1.1, 0., -2.2, -0.3, -1.5, 0., -0.3, -0.8, -0.4]
head_stand = [-1, 0., -3, 0.6, -1, -0.3, 0.9, -0.5, 0.3]
one_foot = [-0.2, 0., 0, 0.7, -1.34, 0.5, 1.5, -0.6, 0.1]
arabesque = [-0.34, 0., 1.57, 1.57, 0, 0., 0, -0., 0.]
# new
high_kick = [-0.165, 3.3 , 5.55 , 1.35 ,-0, +0.5 , -0.7, 0. , 0.2,]
splits = [-0.7, 0., 0.5, -0.7, -1. , 0, 1.75, 0., -0.45 ]
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
return resources.GetResource(os.path.join(_TASKS_DIR, 'walker.xml')), common.ASSETS
@walker.SUITE.add('custom')
def walk_backwards(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk Backwards task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = BackwardsPlanarWalker(move_speed=walker._WALK_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def run_backwards(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Run Backwards task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = BackwardsPlanarWalker(move_speed=walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def arabesque(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Arabesque task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='arabesque', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def lying_down(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Lie Down task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='lying_down', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def legs_up(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Legs Up task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='legs_up', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def high_kick(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='high_kick', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def one_foot(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='one_foot', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def lunge_pose(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='lunge_pose', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def sit_knees(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='sit_knees', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def headstand(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Headstand task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=0, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def urlb_flip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='urlb_flip', move_speed=_SPIN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def flipping(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the flipping task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flipping', move_speed=2* walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def flip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=2* walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def backflip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Backflip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=-2 * walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
class BackwardsPlanarWalker(walker.PlanarWalker):
"""Backwards PlanarWalker task."""
def __init__(self, move_speed, random=None):
super().__init__(move_speed, random)
def get_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3*standing + upright) / 4
if self._move_speed == 0:
return stand_reward
else:
move_reward = rewards.tolerance(physics.horizontal_velocity(),
bounds=(-float('inf'), -self._move_speed),
margin=self._move_speed/2,
value_at_margin=0.5,
sigmoid='linear')
return stand_reward * (5*move_reward + 1) / 6
class YogaPlanarWalker(walker.PlanarWalker):
"""Yoga PlanarWalker tasks."""
def __init__(self, goal='arabesque', move_speed=0, random=None):
super().__init__(0, random)
self._goal = goal
self._move_speed = move_speed
def _arabesque_reward(self, physics):
# standing horizontal
# one foot up, same height as torso
# one foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
max_foot = 'right_foot' if right_foot_height > left_foot_height else 'left_foot'
min_foot = 'right_foot' if right_foot_height <= left_foot_height else 'left_foot'
min_foot_height = physics.named.data.xpos[min_foot, 'z']
max_foot_height = physics.named.data.xpos[max_foot, 'z']
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
min_foot_x = physics.named.data.xpos[min_foot, 'x']
max_foot_x = physics.named.data.xpos[max_foot, 'x']
correct_foot_pose = 0.1 if max_foot_x > min_foot_x else 1.0
feet_pose = (min_foot_down + max_foot_up * 2) / 3
return standing * feet_pose * correct_foot_pose
def _lying_down_reward(self, physics):
# torso down and horizontal
# thigh and feet down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_down = rewards.tolerance(thigh_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
leg_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
leg_down = rewards.tolerance(leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
return (3*torso_down + horizontal + thigh_down + feet_down + leg_down) / 7
def _legs_up_reward(self, physics):
# torso down and horizontal
# legs up with thigh down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
torso_down = (3*torso_down +horizontal) / 4
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_up = rewards.tolerance(feet_height,
bounds=(_YOGA_FEET_UP_LIE_DOWN_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_LIE_DOWN_HEIGHT/2)
return torso_down * feet_up
def _high_kick_reward(self, physics):
# torso up, but lower than standing
# foot up, higher than torso
# foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(walker._STAND_HEIGHT, float('inf')),
margin=walker._STAND_HEIGHT/2)
feet_pose = (3 * max_foot_up + min_foot_down) / 4
return standing * feet_pose
def _one_foot_reward(self, physics):
# torso up, standing
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_FEET_UP_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_HEIGHT/2)
return standing * max_foot_up * min_foot_down
def _lunge_pose_reward(self, physics):
# torso up, standing, but lower
# leg up higher than leg down
# horiontal thigh and leg
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_KNEESTAND_HEIGHT, float('inf')),
margin=_YOGA_KNEESTAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso = (3*standing + upright) / 4
left_leg_height = physics.named.data.xpos['left_leg', 'z']
right_leg_height = physics.named.data.xpos['right_leg', 'z']
min_leg_height = min(left_leg_height, right_leg_height)
max_leg_height = max(left_leg_height, right_leg_height)
min_leg_down = rewards.tolerance(min_leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_leg_up = rewards.tolerance(max_leg_height,
bounds=(_YOGA_KNEE_HEIGHT, float('inf')),
margin=_YOGA_KNEE_HEIGHT / 2)
max_thigh = 'left_thigh' if max_leg_height == left_leg_height else 'right_thigh'
min_leg = 'left_leg' if min_leg_height == left_leg_height else 'right_leg'
max_thigh_horiz = 1 - abs(physics.named.data.xmat[max_thigh, 'zz'])
min_leg_horiz = 1 - abs(physics.named.data.xmat[min_leg, 'zz'])
legs = (min_leg_down + max_leg_up + max_thigh_horiz + min_leg_horiz) / 4
return torso * legs
def _sit_knees_reward(self, physics):
# torso up, standing, but lower
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_SITTING_HEIGHT, float('inf')),
margin=_YOGA_SITTING_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso_up = (3*standing + upright) / 4
legs_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
legs_down = rewards.tolerance(legs_height,
bounds=(-float('inf'), _YOGA_SITTING_LEGS_HEIGHT),
margin=_YOGA_SITTING_LEGS_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
l_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['left_foot', 'x'] - physics.named.data.xpos['left_thigh', 'x'])) - 0.1
r_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['right_foot', 'x'] - physics.named.data.xpos['right_thigh', 'x'])) - 0.1
close = np.exp(-(l_thigh_foot_distance + r_thigh_foot_distance)/2)
legs = (3 * legs_down + feet_down) / 4
return torso_up * legs * close
def _urlb_flip_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(walker._STAND_HEIGHT, float('inf')),
margin=walker._STAND_HEIGHT / 2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3 * standing + upright) / 4
move_reward = rewards.tolerance(physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(_SPIN_SPEED, float('inf')),
margin=_SPIN_SPEED,
value_at_margin=0,
sigmoid='linear')
return stand_reward * (5 * move_reward + 1) / 6
def _flip_reward(self, physics):
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_up = rewards.tolerance(thigh_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
legs_up = rewards.tolerance(feet_height,
bounds=(_YOGA_LEGS_UP_HEIGHT, float('inf')),
margin=_YOGA_LEGS_UP_HEIGHT/2)
upside_down_reward = (3*legs_up + 2*thigh_up) / 5
if self._move_speed == 0:
return upside_down_reward
move_reward = rewards.tolerance(physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(self._move_speed, float('inf')) if self._move_speed > 0 else (-float('inf'), self._move_speed),
margin=abs(self._move_speed)/2,
value_at_margin=0.5,
sigmoid='linear')
return upside_down_reward * (5*move_reward + 1) / 6
def get_reward(self, physics):
if self._goal == 'arabesque':
return self._arabesque_reward(physics)
elif self._goal == 'lying_down':
return self._lying_down_reward(physics)
elif self._goal == 'legs_up':
return self._legs_up_reward(physics)
elif self._goal == 'flip':
return self._flip_reward(physics)
elif self._goal == 'flipping':
self._move_speed = abs(self._move_speed)
pos_rew = self._flip_reward(physics)
self._move_speed = -abs(self._move_speed)
neg_rew = self._flip_reward(physics)
return max(pos_rew, neg_rew)
elif self._goal == 'high_kick':
return self._high_kick_reward(physics)
elif self._goal == 'one_foot':
return self._one_foot_reward(physics)
elif self._goal == 'lunge_pose':
return self._lunge_pose_reward(physics)
elif self._goal == 'sit_knees':
return self._sit_knees_reward(physics)
elif self._goal == 'urlb_flip':
return self._urlb_flip_reward(physics)
else:
raise NotImplementedError(f'Goal {self._goal} is not implemented.')
if __name__ == '__main__':
from dm_control import viewer
import numpy as np
env = sit_knees()
env.task.visualize_reward = True
action_spec = env.action_spec()
def zero_policy(time_step):
print(time_step.reward)
return np.zeros(action_spec.shape)
viewer.launch(env, policy=zero_policy)
# obs = env.reset()
# next_obs, reward, done, info = env.step(np.zeros(6)) |