File size: 7,919 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import math
import random
import time
from functools import wraps

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
from collections.abc import MutableMapping

class eval_mode:
    def __init__(self, *models):
        self.models = models

    def __enter__(self):
        self.prev_states = []
        for model in self.models:
            self.prev_states.append(model.training)
            model.train(False)

    def __exit__(self, *args):
        for model, state in zip(self.models, self.prev_states):
            model.train(state)
        return False


def set_seed_everywhere(seed):
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


def soft_update_params(net, target_net, tau):
    for param, target_param in zip(net.parameters(), target_net.parameters()):
        target_param.data.copy_(tau * param.data +
                                (1 - tau) * target_param.data)


def hard_update_params(net, target_net):
    for param, target_param in zip(net.parameters(), target_net.parameters()):
        target_param.data.copy_(param.data)


def weight_init(m):
    """Custom weight init for Conv2D and Linear layers."""
    if isinstance(m, nn.Linear):
        nn.init.orthogonal_(m.weight.data)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)
    elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        gain = nn.init.calculate_gain('relu')
        nn.init.orthogonal_(m.weight.data, gain)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)

class Until:
    def __init__(self, until, action_repeat=1):
        self._until = until
        self._action_repeat = action_repeat

    def __call__(self, step):
        if self._until is None:
            return True
        until = self._until // self._action_repeat
        return step < until


class Every:
    def __init__(self, every, action_repeat=1):
        self._every = every
        self._action_repeat = action_repeat

    def __call__(self, step):
        if self._every is None:
            return False
        every = self._every // self._action_repeat
        if step % every == 0:
            return True
        return False


class Timer:
    def __init__(self):
        self._start_time = time.time()
        self._last_time = time.time()

    def reset(self):
        elapsed_time = time.time() - self._last_time
        self._last_time = time.time()
        total_time = time.time() - self._start_time
        return elapsed_time, total_time

    def total_time(self):
        return time.time() - self._start_time


class TruncatedNormal(pyd.Normal):
    def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
        super().__init__(loc, scale, validate_args=False)
        self.low = low
        self.high = high
        self.eps = eps

    def _clamp(self, x):
        clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
        x = x - x.detach() + clamped_x.detach()
        return x

    def sample(self, sample_shape=torch.Size(), stddev_clip=None):
        shape = self._extended_shape(sample_shape)
        eps = _standard_normal(shape,
                               dtype=self.loc.dtype,
                               device=self.loc.device)
        eps *= self.scale
        if stddev_clip is not None:
            eps = torch.clamp(eps, -stddev_clip, stddev_clip)
        x = self.loc + eps
        return self._clamp(x)


class TanhTransform(pyd.transforms.Transform):
    domain = pyd.constraints.real
    codomain = pyd.constraints.interval(-1.0, 1.0)
    bijective = True
    sign = +1

    def __init__(self, cache_size=1):
        super().__init__(cache_size=cache_size)

    @staticmethod
    def atanh(x):
        return 0.5 * (x.log1p() - (-x).log1p())

    def __eq__(self, other):
        return isinstance(other, TanhTransform)

    def _call(self, x):
        return x.tanh()

    def _inverse(self, y):
        # We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
        # one should use `cache_size=1` instead
        return self.atanh(y)

    def log_abs_det_jacobian(self, x, y):
        # We use a formula that is more numerically stable, see details in the following link
        # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7
        return 2. * (math.log(2.) - x - F.softplus(-2. * x))


class SquashedNormal(pyd.transformed_distribution.TransformedDistribution):
    def __init__(self, loc, scale):
        self.loc = loc
        self.scale = scale

        self.base_dist = pyd.Normal(loc, scale)
        transforms = [TanhTransform()]
        super().__init__(self.base_dist, transforms)

    @property
    def mean(self):
        mu = self.loc
        for tr in self.transforms:
            mu = tr(mu)
        return mu

def retry(func):
    """
    A Decorator to retry a function for a certain amount of attempts
    """

    @wraps(func)
    def wrapper(*args, **kwargs):
        attempts = 0
        max_attempts = 1000
        while attempts < max_attempts:
            try:
                return func(*args, **kwargs)
            except (OSError, PermissionError):
                attempts += 1
                time.sleep(0.1)
        raise OSError("Retry failed")

    return wrapper

def flatten_dict(dictionary, parent_key='', separator='_'):
    items = []
    for key in dictionary.keys():
        try:
            value = dictionary[key]
        except:
            value = '??? <MISSING>'
        new_key = parent_key + separator + key if parent_key else key
        if isinstance(value, MutableMapping):
            items.extend(flatten_dict(value, new_key, separator=separator).items())
        else:
            items.append((new_key, value))
    return dict(items)

def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    '''
    Spherical linear interpolation
    Args:
        t (float/np.ndarray): Float value between 0.0 and 1.0
        v0 (np.ndarray): Starting vector
        v1 (np.ndarray): Final vector
        DOT_THRESHOLD (float): Threshold for considering the two vectors as
                               colineal. Not recommended to alter this.
    Returns:
        v2 (np.ndarray): Interpolation vector between v0 and v1
    '''
    c = False
    if not isinstance(v0,np.ndarray):
        c = True
        v0 = v0.detach().cpu().numpy()
    if not isinstance(v1,np.ndarray):
        c = True
        v1 = v1.detach().cpu().numpy()
    if len(v0.shape) == 1:
        v0 = v0.reshape(1, -1)
    if len(v1.shape) == 1:
        v1 = v1.reshape(1, -1)
    # Copy the vectors to reuse them later
    v0_copy = np.copy(v0)
    v1_copy = np.copy(v1)
    # Normalize the vectors to get the directions and angles
    v0 = v0 / np.linalg.norm(v0, axis=-1, keepdims=True)
    v1 = v1 / np.linalg.norm(v1, axis=-1, keepdims=True)
    # Dot product with the normalized vectors (can't use np.dot in W)
    dot = np.sum(v0 * v1, axis=-1)
    # If absolute value of dot product is almost 1, vectors are ~colineal, so use lerp
    if (np.abs(dot) > DOT_THRESHOLD).any():
        raise NotImplementedError('lerp not implemented') # return lerp(t, v0_copy, v1_copy)
    # Calculate initial angle between v0 and v1
    theta_0 = np.arccos(dot)
    sin_theta_0 = np.sin(theta_0)
    # Angle at timestep t
    theta_t = theta_0 * t
    sin_theta_t = np.sin(theta_t)
    # Finish the slerp algorithm
    s0 = np.sin(theta_0 - theta_t) / sin_theta_0
    s1 = sin_theta_t / sin_theta_0
    v2 = s0.reshape(-1, 1) * v0_copy + s1.reshape(-1, 1) * v1_copy
    if c:
        res = torch.from_numpy(v2).to("cuda")
    else:
        res = v2
    return res