File size: 4,418 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np


# --------------------------------------------------------
# 3D sine-cosine position embedding
# References:
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
# --------------------------------------------------------
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    t_size: int of the temporal size
    return:
    pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    assert embed_dim % 4 == 0
    embed_dim_spatial = embed_dim // 4 * 3
    embed_dim_temporal = embed_dim // 4

    # spatial
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
        embed_dim_spatial, grid
    )

    # temporal
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
        embed_dim_temporal, grid_t
    )

    # concate: [T, H, W] order
    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(
        pos_embed_temporal, grid_size**2, axis=1
    )  # [T, H*W, D // 4]
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(
        pos_embed_spatial, t_size, axis=0
    )  # [T, H*W, D // 4 * 3]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
    pos_embed = pos_embed.reshape([-1, embed_dim])  # [T*H*W, D]

    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
    """
    t_size: int of the temporal size
    return:
    pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[0]
    )  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[1]
    )  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb