Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,925 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import math
import torch
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from torch import nn
import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange
from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed
from .flash_attention_class import FlashAttention
from flash_attn.modules.mlp import FusedMLP
from flash_attn.ops.rms_norm import DropoutAddRMSNorm
class CrossAttention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., attn_head_dim=None, out_dim=None):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
super().__init__()
self.norm1_q = norm_layer(dim)
self.norm1_k = norm_layer(dim)
self.norm1_v = norm_layer(dim)
self.cross_attn = CrossAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
if drop_path > 0.:
print(f"Use DropPath in projector: {drop_path}")
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_attn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv, pos_q, pos_k = x, 0, 0
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
x = x.squeeze(1)
return x
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
self.force_fp32 = force_fp32
@torch.cuda.amp.autocast(enabled=False)
def forward(self, x):
if self.force_fp32:
output_type = x.dtype
out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
return out.to(dtype=output_type)
else:
out = x.mul_(self.gamma) if self.inplace else x * self.gamma
return out
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.use_flash_attn = use_flash_attn
if use_flash_attn:
self.causal = causal
self.inner_attn = FlashAttention(attention_dropout=attn_drop)
self.qk_normalization = qk_normalization
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.use_fused_rmsnorm = use_fused_rmsnorm
def _naive_attn(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
if self.use_fused_rmsnorm:
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
else:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, x):
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
return x
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
bias=True, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Block(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
use_fused_rmsnorm=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
qk_normalization=qk_normalization,
use_fused_rmsnorm=use_fused_rmsnorm)
self.ls1 = LayerScale(dim, init_values=init_values,
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if use_fused_mlp:
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
else:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values,
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.with_cp = with_cp
self.use_fused_rmsnorm = use_fused_rmsnorm
def forward(self, x, residual=None):
def _inner_forward(x, residual=None):
if self.use_fused_rmsnorm:
x, residual = self.norm1(x, residual)
x = self.drop_path1(self.ls1(self.attn(x)))
x, residual = self.norm2(x, residual)
x = self.drop_path2(self.ls2(self.mlp(x)))
return x, residual
else:
assert residual is None
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
if self.with_cp:
return checkpoint.checkpoint(_inner_forward, x, residual)
else:
return _inner_forward(x, residual=residual)
class PatchEmbed(nn.Module):
""" 3D Image to Patch Embedding
"""
def __init__(
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
num_frames=8, tubelet_size=1, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.tubelet_size = tubelet_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1]
) # (T, H, W)
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.proj = nn.Conv3d(
in_channels=in_chans, out_channels=embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1])
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C
x = self.norm(x)
return x
class InternVideo2(nn.Module):
def __init__(
self,
in_chans: int = 3,
patch_size: int = 14,
img_size: int = 224,
qkv_bias: bool = False,
drop_path_rate: float = 0.25,
embed_dim: int = 1408,
head_drop_path_rate: float = 0.,
num_heads: int = 16,
mlp_ratio: float = 4.3637,
init_values: float = 1e-5,
qk_normalization: bool = True,
depth: int = 40,
use_flash_attn: bool = True,
use_fused_rmsnorm: bool = True,
use_fused_mlp: bool = True,
fused_mlp_heuristic: int = 1,
attn_pool_num_heads: int = 16,
clip_embed_dim: int = 768,
layerscale_no_force_fp32: bool = False, # when True for training?
num_frames: int = 8,
tubelet_size: int = 1,
sep_pos_embed: bool = False,
use_checkpoint: bool = False,
checkpoint_num: int = 0,
fc_drop_rate: float = 0.,
num_classes: int = 1000,
init_scale: float = 0.001,
merge_method: str = "proj", # proj, cls_avg1, cls_avgN, cls_avg1_proj, cls_avgN_proj
merge_norm: str = 'kaiming_BN',
):
super().__init__()
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print(
'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent')
print(mlp_ratio)
self.merge_method = merge_method
self.merge_norm = merge_norm
print(f"Merge method: {merge_method}")
print(f"Merge Norm: {merge_norm}")
self.use_flash_attn = use_flash_attn
self.embed_dim = embed_dim
if use_fused_rmsnorm:
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
else:
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
self.norm_layer_for_blocks = norm_layer_for_blocks
self.patch_embed = PatchEmbed(
img_size, patch_size, in_chans, embed_dim,
num_frames=num_frames, tubelet_size=tubelet_size,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
self.sep_pos_embed = sep_pos_embed
if sep_pos_embed:
print("Use seperable position embedding")
grid_size = self.patch_embed.grid_size
self.grid_size = grid_size
self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim))
self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim))
self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
print("Use joint position embedding")
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# choose which layer to use checkpoint
with_cp_list = [False] * depth
if use_checkpoint:
for idx in range(depth):
if idx < checkpoint_num:
with_cp_list[idx] = True
print(f"Droppath rate: {dpr}")
print(f"Checkpoint list: {with_cp_list}")
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
norm_layer=norm_layer_for_blocks,
drop_path=dpr[i], init_values=init_values, attn_drop=0.,
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
fused_mlp_heuristic=fused_mlp_heuristic,
with_cp=with_cp_list[i],
qk_normalization=qk_normalization,
layerscale_no_force_fp32=layerscale_no_force_fp32,
use_fused_rmsnorm=use_fused_rmsnorm)
for i in range(depth)])
self.clip_projector = AttentionPoolingBlock(
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
drop=0., attn_drop=0., drop_path=head_drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim
)
self.fc_norm = nn.LayerNorm(clip_embed_dim)
self.fc_dropout = nn.Dropout(p=fc_drop_rate) if fc_drop_rate > 0 else nn.Identity()
if self.merge_method == 'proj':
self.head = nn.Linear(clip_embed_dim, num_classes)
else:
norm_dim = embed_dim if 'avg1' in merge_method else clip_embed_dim
if merge_norm == 'kaiming_BN':
self.down_norm = nn.BatchNorm1d(norm_dim, affine=False, eps=1e-6)
elif merge_norm == 'LN':
self.down_norm = nn.LayerNorm(norm_dim)
elif merge_norm == 'BN':
self.down_norm = nn.BatchNorm1d(norm_dim)
else:
print(f"Wrong Norm: {merge_norm}")
raise Exception
# add downsample for avgN
if self.merge_method == 'cls_avg1':
self.down = nn.Identity()
self.head = nn.Linear(embed_dim * 2, num_classes)
elif self.merge_method == 'cls_avgN':
self.down = nn.Sequential(
nn.Linear(embed_dim, clip_embed_dim),
nn.GELU()
)
self.head = nn.Linear(clip_embed_dim * (num_frames // tubelet_size + 1), num_classes)
elif self.merge_method == 'cls_avg1_proj':
self.down = nn.Identity()
self.head = nn.Linear(embed_dim * 2 + clip_embed_dim, num_classes)
elif self.merge_method == 'cls_avgN_proj':
self.down = nn.Sequential(
nn.Linear(embed_dim, clip_embed_dim),
nn.GELU(),
)
self.head = nn.Linear(clip_embed_dim * (num_frames // tubelet_size + 2), num_classes)
else:
print(f"Wrong method: {self.merge_method}")
raise Exception
self.init_pos_embed()
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
def init_pos_embed(self):
print("Init pos_embed from sincos pos_embed")
if self.sep_pos_embed:
# trunc_normal_(self.pos_embed_spatial, std=.02)
# trunc_normal_(self.pos_embed_temporal, std=.02)
# trunc_normal_(self.pos_embed_cls, std=.02)
pos_embed_spatial = get_2d_sincos_pos_embed(
self.pos_embed_spatial.shape[-1],
self.patch_embed.grid_size[1], # height & weight
)
self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0))
pos_embed_temporal = get_1d_sincos_pos_embed(
self.pos_embed_spatial.shape[-1],
self.patch_embed.grid_size[0], # t_size
)
self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0))
else:
# trunc_normal_(self.pos_embed, std=.02)
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1],
self.patch_embed.grid_size[1], # height & weight
self.patch_embed.grid_size[0], # t_size
cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@property
def dtype(self):
return self.patch_embed.proj.weight.dtype
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {
'pos_embed',
'pos_embed_spatial',
'pos_embed_temporal',
'pos_embed_cls',
'cls_token'
}
def forward(self, x):
x = self.patch_embed(x.type(self.dtype))
B, T, L, C = x.shape # T: temporal; L: spatial
x = x.view([B, T * L, C])
# append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add pos_embed
if self.sep_pos_embed:
pos_embed = self.pos_embed_spatial.repeat(
1, self.grid_size[0], 1
) + torch.repeat_interleave(
self.pos_embed_temporal,
self.grid_size[1] * self.grid_size[2],
dim=1,
)
pos_embed = torch.cat(
[
self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1),
pos_embed,
],
1,
)
else:
pos_embed = self.pos_embed
x = x + pos_embed
residual = None
for blk in self.blocks:
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
x = blk(x, residual=residual)
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
if residual is not None:
x = x + residual
if self.merge_method != 'proj':
# extra cls and avg
cls, avg = x[:, :1, :], x[:, 1:, :]
if 'avg1' in self.merge_method:
avg = avg.mean(1, keepdim=True) # (B, 1, C)
elif 'avgN' in self.merge_method:
avg = avg.view(B, T, L, C).mean(2) # (B, T, C)
final = self.down(torch.cat([cls, avg], dim=1)) # B, 1+T, C
if 'BN' in self.merge_norm:
final = self.down_norm(final.permute(0, 2, 1)).reshape(B, -1)
else:
final = self.down_norm(final).reshape(B, -1)
x = self.clip_projector(x)
x = self.fc_norm(x)
if self.merge_method == 'proj':
x = self.head(self.fc_dropout(x))
elif self.merge_method in ['cls_avg1', 'cls_avgN']:
x = self.head(self.fc_dropout(final))
elif self.merge_method in ['cls_avg1_proj', 'cls_avgN_proj']:
x = self.head(self.fc_dropout(torch.cat([final, x], dim=1)))
return x
@register_model
def internvideo2_cat_1B_patch14_224(pretrained=False, **kwargs):
model = InternVideo2(
img_size=224, patch_size=14, embed_dim=1408,
depth=40, num_heads=16, mlp_ratio=48/11,
attn_pool_num_heads=16, clip_embed_dim=768,
**kwargs
)
return model
@register_model
def internvideo2_cat_6B_patch14_224(pretrained=False, **kwargs):
model = InternVideo2(
img_size=224, patch_size=14, embed_dim=3200,
depth=48, num_heads=25, mlp_ratio=4,
attn_pool_num_heads=16, clip_embed_dim=768,
**kwargs
)
return model
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
num_frames = 8
img_size = 224
# model = internvideo2_cat_1B_patch14_224(num_classes=400).cuda().half()
model = internvideo2_cat_6B_patch14_224(
num_classes=400,
# merge_method='cls_avgN_proj',
merge_method='cls_avg1',
merge_norm='LN',
# merge_norm='kaiming_BN',
).cuda().half()
print(model)
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, img_size, img_size).cuda().half())
s = time.time()
print(flop_count_table(flops, max_depth=1))
print(time.time()-s)
|