File size: 5,622 Bytes
f079597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

import logging
from typing import Any, Dict, List, Optional

import numpy as np

logger = logging.getLogger(__name__)

from sahi.models.base import DetectionModel
from sahi.prediction import ObjectPrediction
from sahi.utils.compatibility import fix_full_shape_list, fix_shift_amount_list
from sahi.utils.import_utils import check_requirements
from .yolov8_onnx import *

class Yolov8onnxDetectionModel(DetectionModel):
    def check_dependencies(self) -> None:
        check_requirements(["ultralytics"])

    def load_model(self):
        """
        Detection model is initialized and set to self.model.
        """
        import yaml
        from pathlib import Path
        config = yaml.safe_load(Path(self.config_path).read_text())

        try:
            self.model = Yolov8onnx(
                onnx_model=self.model_path,
                input_width = config['imgsz'],
                input_height = config['imgsz'],
                confidence_thres=self.confidence_threshold,
                iou_thres=0.5,
                device=self.device
                )
        except Exception as e:
            raise TypeError("model_path is not a valid yolov8 model path: ", e)

        self.category_name_list = list(self.category_mapping.values())
        self.category_name_list_len = len(self.category_name_list)


    def perform_inference(self, image: np.ndarray):
        """
        Prediction is performed using self.model and the prediction result is set to self._original_predictions.
        Args:
            image: np.ndarray
                A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        """

        # Confirm model is loaded
        if self.model is None:
            raise ValueError("Model is not loaded, load it by calling .load_model()")
        prediction_result = self.model.inference(image[:, :, ::-1])  # YOLOv8 expects numpy arrays to have BGR
        #prediction_result = [
        #    result.boxes.data[result.boxes.data[:, 4] >= self.confidence_threshold] for result in prediction_result
        #]
        self._original_predictions = [prediction_result]

    @property
    def num_categories(self):
        return self.category_name_list_len

    @property
    def has_mask(self):
        return False

    @property
    def category_names(self):
        return self.category_name_list

    def _create_object_prediction_list_from_original_predictions(
        self,
        shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
        full_shape_list: Optional[List[List[int]]] = None,
    ):
        """
        self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
        self._object_prediction_list_per_image.
        Args:
            shift_amount_list: list of list
                To shift the box and mask predictions from sliced image to full sized image, should
                be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
            full_shape_list: list of list
                Size of the full image after shifting, should be in the form of
                List[[height, width],[height, width],...]
        """
        original_predictions = self._original_predictions

        # compatilibty for sahi v0.8.15
        shift_amount_list = fix_shift_amount_list(shift_amount_list)
        full_shape_list = fix_full_shape_list(full_shape_list)

        # handle all predictions
        object_prediction_list_per_image = []
        for image_ind, original_prediction in enumerate(original_predictions):
            bboxes = original_prediction[0]
            scores = original_prediction[1]
            class_ids = original_prediction[2]
            shift_amount = shift_amount_list[image_ind]
            full_shape = None if full_shape_list is None else full_shape_list[image_ind]
            object_prediction_list = []
            # process predictions
            for original_bbox, score, category_id in zip(bboxes, scores, class_ids):
                x1 = original_bbox[0]
                y1 = original_bbox[1]
                x2 = original_bbox[2]
                y2 = original_bbox[3]
                bbox = [x1, y1, x2, y2]
                category_name = self.category_mapping[str(category_id)]

                # fix negative box coords
                bbox[0] = max(0, bbox[0])
                bbox[1] = max(0, bbox[1])
                bbox[2] = max(0, bbox[2])
                bbox[3] = max(0, bbox[3])

                # fix out of image box coords
                if full_shape is not None:
                    bbox[0] = min(full_shape[1], bbox[0])
                    bbox[1] = min(full_shape[0], bbox[1])
                    bbox[2] = min(full_shape[1], bbox[2])
                    bbox[3] = min(full_shape[0], bbox[3])

                # ignore invalid predictions
                if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                    logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                    continue

                object_prediction = ObjectPrediction(
                    bbox=bbox,
                    category_id=category_id,
                    score=score,
                    bool_mask=None,
                    category_name=category_name,
                    shift_amount=shift_amount,
                    full_shape=full_shape,
                )
                object_prediction_list.append(object_prediction)
            object_prediction_list_per_image.append(object_prediction_list)

        self._object_prediction_list_per_image = object_prediction_list_per_image