File size: 4,727 Bytes
872912a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4317be9
 
 
 
 
 
 
 
 
 
 
 
 
872912a
 
9e4cf5c
872912a
9e4cf5c
 
872912a
9e4cf5c
872912a
9e4cf5c
872912a
9e4cf5c
872912a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4317be9
 
 
 
 
 
 
 
 
 
 
872912a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b2280
872912a
 
5c29f08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Import the necessary Libraries
import os
import uuid
import json

import gradio as gr

from openai import OpenAI

from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma

from huggingface_hub import CommitScheduler
from pathlib import Path
from dotenv import load_dotenv


# Create Client
load_dotenv()

os.environ["ANYSCALE_API_KEY"]=os.getenv("ANYSCALE_API_KEY")

client = OpenAI(
    base_url="https://api.endpoints.anyscale.com/v1",
    api_key=os.environ['ANYSCALE_API_KEY']
)

embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
# Define the embedding model and the vectorstore

collection_name = 'report-10k-2024'

vectorstore_persisted = Chroma(
    collection_name=collection_name,
    persist_directory='./dataset-10k',
    embedding_function=embedding_model
)

# Load the persisted vectorDB

retriever = vectorstore_persisted.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 5}
)


# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="RAG-investment-recommendation-log",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the Q&A system message
qna_system_message = """
You are an AI assistant to help Finsights Grey Inc., an innovative financial technology firm, develop a Retrieval-Augmented Generation (RAG) system to automate the extraction, summarization, and analysis of information from 10-K reports. Your knowledge base was last updated in August 2023.

User input will have the context required by you to answer user questions. This context will begin with the token: ###Context.
The context contains references to specific portions of a 10-K report relevant to the user query.

User questions will begin with the token: ###Question.

Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.

If the answer is not found in the context, respond, "I don't know".
Here is an example of how to structure your response:

Answer:
[Answer]

Source
[Source]
"""

# Define the user message template
qna_user_message_template = """
###Context
Here are some documents that are relevant to the question.
{context}
```
{question}
```
"""

# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input,company):

    filter = "dataset/"+company+"-10-k-2023.pdf"
    relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})

    # Create context_for_query
    context_list = [d.page_content for d in relevant_document_chunks]
    context_for_query = ".".join(context_list)

    # Create messages
    prompt = [
        {'role':'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(
            context=context_for_query,
            question=user_input
            )
        }
    ]

    # Get response from the LLM
    try:
        response = client.chat.completions.create(
            model='mistralai/Mixtral-8x7B-Instruct-v0.1',
            messages=prompt,
            temperature=0
        )

        prediction = response.choices[0].message.content

    except Exception as e:
        prediction = e

    # While the prediction is made, log both the inputs and outputs to a local log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': user_input,
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set-up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
with gr.Blocks() as demo:
    with gr.Row():
        question = gr.Textbox(label="Enter your question")
        company = gr.Radio(["aws", "IBM", "google", "meta", "msft"], label="Select a company")
    
    submit = gr.Button("Submit")
    output = gr.Textbox(label="Output")

    submit.click(
        fn=predict,
        inputs=[question, company],
        outputs=output
    )

demo.launch()
# Create the interface
# For the inputs parameter of Interface, provide [textbox, company]

demo.queue()
demo.launch(auth=("demouser", os.getenv('PASSWD')))