Spaces:
Running
Running
File size: 9,837 Bytes
10f957b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import GPT2TokenizerFast
LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"he": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
**{language: code for code, language in LANGUAGES.items()},
"burmese": "my",
"valencian": "ca",
"flemish": "nl",
"haitian": "ht",
"letzeburgesch": "lb",
"pushto": "ps",
"panjabi": "pa",
"moldavian": "ro",
"moldovan": "ro",
"sinhalese": "si",
"castilian": "es",
}
@dataclass(frozen=True)
class Tokenizer:
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
tokenizer: "GPT2TokenizerFast"
language: Optional[str]
sot_sequence: Tuple[int]
def encode(self, text, **kwargs):
return self.tokenizer.encode(text, **kwargs)
def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
return self.tokenizer.decode(token_ids, **kwargs)
def decode_with_timestamps(self, tokens) -> str:
"""
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
outputs = [[]]
for token in tokens:
if token >= self.timestamp_begin:
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
outputs.append(timestamp)
outputs.append([])
else:
outputs[-1].append(token)
outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
return "".join(outputs)
@property
@lru_cache()
def eot(self) -> int:
return self.tokenizer.eos_token_id
@property
@lru_cache()
def sot(self) -> int:
return self._get_single_token_id("<|startoftranscript|>")
@property
@lru_cache()
def sot_lm(self) -> int:
return self._get_single_token_id("<|startoflm|>")
@property
@lru_cache()
def sot_prev(self) -> int:
return self._get_single_token_id("<|startofprev|>")
@property
@lru_cache()
def no_speech(self) -> int:
return self._get_single_token_id("<|nospeech|>")
@property
@lru_cache()
def no_timestamps(self) -> int:
return self._get_single_token_id("<|notimestamps|>")
@property
@lru_cache()
def timestamp_begin(self) -> int:
return self.tokenizer.all_special_ids[-1] + 1
@property
@lru_cache()
def language_token(self) -> int:
"""Returns the token id corresponding to the value of the `language` field"""
if self.language is None:
raise ValueError(f"This tokenizer does not have language token configured")
additional_tokens = dict(
zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
)
)
candidate = f"<|{self.language}|>"
if candidate in additional_tokens:
return additional_tokens[candidate]
raise KeyError(f"Language {self.language} not found in tokenizer.")
@property
@lru_cache()
def all_language_tokens(self) -> Tuple[int]:
result = []
for token, token_id in zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
):
if token.strip("<|>") in LANGUAGES:
result.append(token_id)
return tuple(result)
@property
@lru_cache()
def all_language_codes(self) -> Tuple[str]:
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
@property
@lru_cache()
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
return tuple(list(self.sot_sequence) + [self.no_timestamps])
@property
@lru_cache()
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
- ♪♪♪
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])
return tuple(sorted(result))
def _get_single_token_id(self, text) -> int:
tokens = self.tokenizer.encode(text)
assert len(tokens) == 1, f"{text} is not encoded as a single token"
return tokens[0]
@lru_cache(maxsize=None)
def build_tokenizer(name: str = "gpt2"):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
path = os.path.join(os.path.dirname(__file__), "assets", name)
tokenizer = GPT2TokenizerFast.from_pretrained(path)
specials = [
"<|startoftranscript|>",
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
]
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
return tokenizer
@lru_cache(maxsize=None)
def get_tokenizer(
multilingual: bool,
*,
task: Optional[str] = None, # Literal["transcribe", "translate", None]
language: Optional[str] = None,
) -> Tokenizer:
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE:
language = TO_LANGUAGE_CODE[language]
else:
raise ValueError(f"Unsupported language: {language}")
if multilingual:
tokenizer_name = "multilingual"
task = task or "transcribe"
language = language or "en"
else:
tokenizer_name = "gpt2"
task = None
language = None
tokenizer = build_tokenizer(name=tokenizer_name)
all_special_ids: List[int] = tokenizer.all_special_ids
sot: int = all_special_ids[1]
translate: int = all_special_ids[-6]
transcribe: int = all_special_ids[-5]
langs = tuple(LANGUAGES.keys())
sot_sequence = [sot]
if language is not None:
sot_sequence.append(sot + 1 + langs.index(language))
if task is not None:
sot_sequence.append(transcribe if task == "transcribe" else translate)
return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))
|