File size: 5,522 Bytes
94bafa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import torch
import random
import torch.utils.data as data

import numpy as np
import io
import json
from PIL import Image

IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']

def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)

class TaichiImages(data.Dataset):
    def __init__(self, configs, transform, temporal_sample=None, train=True):

        self.configs = configs
        self.data_path = configs.data_path
        self.transform = transform
        self.temporal_sample = temporal_sample
        self.target_video_len = self.configs.num_frames
        self.frame_interval = self.configs.frame_interval
        self.data_all, self.video_frame_all = self.load_video_frames(self.data_path)
        self.video_num = len(self.data_all)
        self.video_frame_num = len(self.video_frame_all)

        # sky video frames
        random.shuffle(self.video_frame_all)
        self.use_image_num = configs.use_image_num

    def __getitem__(self, index):

        video_index = index % self.video_num
        vframes = self.data_all[video_index]
        total_frames = len(vframes)

        # Sampling video frames
        start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
        assert end_frame_ind - start_frame_ind >= self.target_video_len
        frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int)
        # print(frame_indice)
        select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval]

        video_frames = []
        for path in select_video_frames:
            image = Image.open(path).convert('RGB')
            video_frame = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0)
            video_frames.append(video_frame)
        video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)
        video_clip = self.transform(video_clip)

        # get video frames
        images = []
        for i in range(self.use_image_num):
            while True:
                try:      
                    video_frame_path = self.video_frame_all[index+i]
                    image_path = os.path.join(self.data_path, video_frame_path)
                    image = Image.open(image_path).convert('RGB')
                    image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0)
                    images.append(image)
                    break
                except Exception as e:
                    index = random.randint(0, self.video_frame_num - self.use_image_num)

        images =  torch.cat(images, dim=0).permute(0, 3, 1, 2)
        images = self.transform(images)
        assert len(images) == self.use_image_num

        video_cat = torch.cat([video_clip, images], dim=0)

        return {'video': video_cat, 'video_name': 1}

    def __len__(self):
        return self.video_frame_num
    
    def load_video_frames(self, dataroot):
        data_all = []
        frames_all = []
        frame_list = os.walk(dataroot)
        for _, meta in enumerate(frame_list):
            root = meta[0]
            try:
                frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1]))
            except:
                print(meta[0], meta[2])
            frames = [os.path.join(root, item) for item in frames if is_image_file(item)]
            # if len(frames) > max(0, self.sequence_length * self.sample_every_n_frames):
            if len(frames) != 0:
                data_all.append(frames)
                for frame in frames:
                    frames_all.append(frame)
        # self.video_num = len(data_all)
        return data_all, frames_all
    

if __name__ == '__main__':

    import argparse
    import torchvision
    import video_transforms
    import torch.utils.data as data

    from torchvision import transforms
    from torchvision.utils import save_image
    
    parser = argparse.ArgumentParser()
    parser.add_argument("--num_frames", type=int, default=16)
    parser.add_argument("--frame_interval", type=int, default=4)
    parser.add_argument("--load_from_ceph", type=bool, default=True)
    parser.add_argument("--data-path", type=str, default="/path/to/datasets/taichi/taichi-256/frames/train")
    parser.add_argument("--use-image-num", type=int, default=5)
    config = parser.parse_args()


    target_video_len = config.num_frames

    temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval)
    trans = transforms.Compose([
        video_transforms.ToTensorVideo(),
        video_transforms.RandomHorizontalFlipVideo(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])

    taichi_dataset = TaichiImages(config, transform=trans, temporal_sample=temporal_sample)
    print(len(taichi_dataset))
    taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1)

    for i, video_data in enumerate(taichi_dataloader):
        print(video_data['video'].shape)
        # print(video_data.dtype)
        # for i in range(target_video_len):
        #     save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1))

        video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
        torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8)
        exit()