File size: 10,816 Bytes
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8c2c6
 
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8c2c6
 
 
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8c2c6
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
9e8c2c6
 
 
 
 
 
 
be791d6
 
 
 
 
9e8c2c6
 
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
9e8c2c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be791d6
 
 
 
 
 
 
9e8c2c6
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import argparse
import torchvision

from pipeline_videogen import VideoGenPipeline
from pipelines.pipeline_inversion import VideoGenInversionPipeline 

from diffusers.schedulers import DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models import AutoencoderKLTemporalDecoder
from transformers import CLIPTokenizer, CLIPTextModel
from omegaconf import OmegaConf

import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from utils import find_model
from models import get_models
import imageio
import decord
import numpy as np
from copy import deepcopy
from PIL import Image
from datasets import video_transforms
from torchvision import transforms
from models.unet import UNet3DConditionModel
from einops import repeat
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq

def prepare_image(path, vae, transform_video, device, dtype=torch.float16):
    with open(path, 'rb') as f:
        image = Image.open(f).convert('RGB')
    image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
    image, ori_h, ori_w, crops_coords_top, crops_coords_left = transform_video(image)
    image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
    image = image.unsqueeze(2)
    return image

def separation_content_motion(video_clip):
    """
    Separate content and motion in a given video.
    Args:
        video_clip: A given video clip, shape [B, C, F, H, W]

    Return:
        base_frame: Base frame, shape [B, C, 1, H, W]
        motions: Motions based on base frame, shape [B, C, F-1, H, W]
    """
    # Selecting the first frame from each video in the batch as the base frame
    base_frame = video_clip[:, :, :1, :, :]

    # Calculating the motion (difference between each frame and the base frame)
    motions = video_clip[:, :, 1:, :, :] - base_frame

    return base_frame, motions


class DecordInit(object):
    """Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""

    def __init__(self, num_threads=1):
        self.num_threads = num_threads
        self.ctx = decord.cpu(0)
        
    def __call__(self, filename):
        """Perform the Decord initialization.
        Args:
            results (dict): The resulting dict to be modified and passed
                to the next transform in pipeline.
        """
        reader = decord.VideoReader(filename,
                                    ctx=self.ctx,
                                    num_threads=self.num_threads)
        return reader

    def __repr__(self):
        repr_str = (f'{self.__class__.__name__}('
                    f'sr={self.sr},'
                    f'num_threads={self.num_threads})')
        return repr_str


def main(args):
    # torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 # torch.float16

    # unet = get_models(args).to(device, dtype=torch.float16)
    # state_dict = find_model(args.ckpt)
    # unet.load_state_dict(state_dict)
    unet = UNet3DConditionModel.from_pretrained(args.pretrained_model_path, subfolder="unet").to(device, dtype=torch.float16)
    
    if args.enable_vae_temporal_decoder:
        if args.use_dct:
            vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
        else:
            vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
        vae = deepcopy(vae_for_base_content).to(dtype=dtype)
    else:
        vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
        vae = deepcopy(vae_for_base_content).to(dtype=dtype)

    tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device)

    # set eval mode
    unet.eval()
    vae.eval()
    text_encoder.eval()

    scheduler_inversion = DDIMScheduler.from_pretrained(args.pretrained_model_path, 
                                              subfolder="scheduler",
                                              beta_start=args.beta_start, 
                                              beta_end=args.beta_end, 
                                              beta_schedule=args.beta_schedule,)
    
    scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, 
                                            subfolder="scheduler",
                                            beta_start=args.beta_start, 
                                            beta_end=args.beta_end, 
                                            # beta_end=0.017, 
                                            beta_schedule=args.beta_schedule,)

    videogen_pipeline = VideoGenPipeline(vae=vae, 
                                 text_encoder=text_encoder, 
                                 tokenizer=tokenizer, 
                                 scheduler=scheduler_inversion, 
                                 unet=unet).to(device)
    
    videogen_pipeline_inversion = VideoGenInversionPipeline(vae=vae, 
                                 text_encoder=text_encoder, 
                                 tokenizer=tokenizer, 
                                 scheduler=scheduler, 
                                 unet=unet).to(device)
    # videogen_pipeline.enable_xformers_memory_efficient_attention()
    # videogen_pipeline.enable_vae_slicing()

    transform_video = video_transforms.Compose([
        video_transforms.ToTensorVideo(),
        video_transforms.SDXLCenterCrop((args.image_size[0], args.image_size[1])), # center crop using shor edge, then resize
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    ])


    # video_path = './video_editing/A_man_walking_on_the_beach.mp4'
    # video_path = './video_editing/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.mp4'
    video_path = './video_editing/test_03.mp4'


    video_reader = DecordInit()
    video = video_reader(video_path)
    frame_indice = np.linspace(0, 15, 16, dtype=int)
    video = torch.from_numpy(video.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
    video = video / 255.0
    video = video * 2.0 - 1.0
    latents = vae.encode(video.to(dtype=torch.float16, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor).unsqueeze(0).permute(0, 2, 1, 3, 4)

    base_content, motion_latents = separation_content_motion(latents)

    # image_path = "./video_editing/a_man_walking_in_the_park.png"
    # image_path = "./video_editing/a_cute_corgi_walking_in_the_park.png"
    image_path = "./video_editing/test_03.png"

    if args.use_dct:
        edit_content = prepare_image(image_path, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device)
    else:
        edit_content = prepare_image(image_path, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device)

    if not os.path.exists(args.save_img_path):
        os.makedirs(args.save_img_path)

    # prompt_inversion = 'a man walking on the beach'
    # prompt_inversion = 'a corgi walking in the park at sunrise, oil painting style'
    # prompt_inversion = 'A girl is playing the guitar in her room'
    prompt_inversion = 'A man is walking inside the church'
    latents = videogen_pipeline_inversion(prompt_inversion, 
                                latents=motion_latents,
                                base_content=base_content,
                                video_length=args.video_length, 
                                height=args.image_size[0], 
                                width=args.image_size[1], 
                                num_inference_steps=args.num_sampling_steps,
                                guidance_scale=1.0,
                                # guidance_scale=args.guidance_scale,
                                motion_bucket_id=args.motion_bucket_id,
                                output_type="latent").video

    # prompt = 'a man walking in the park'
    # prompt = 'a corgi walking in the park at sunrise, oil painting style'
    # prompt = 'A girl is playing the guitar in her room'
    prompt = 'A man is walking inside the church'
 
    if args.use_dct:
        # filter params
        print("Using DCT!")
        edit_content_repeat = repeat(edit_content, 'b c f h w -> b c (f r) h w', r=15).contiguous()

        # define filter
        freq_filter = dct_low_pass_filter(dct_coefficients=edit_content,
                                                percentage=0.23)
        
        noise = latents.to(dtype=torch.float64)

        # add noise to base_content
        diffuse_timesteps = torch.full((1,),int(985))
        diffuse_timesteps = diffuse_timesteps.long()
        
        # 3d content
        edit_content_noise = scheduler.add_noise(
            original_samples=edit_content_repeat.to(device), 
            noise=noise, 
            timesteps=diffuse_timesteps.to(device))
        
        # 3d content
        latents = exchanged_mixed_dct_freq(noise=noise,
                    base_content=edit_content_noise,
                    LPF_3d=freq_filter).to(dtype=torch.float16)
        
        latents = latents.to(dtype=torch.float16)
        edit_content = edit_content.to(dtype=torch.float16)

    videos = videogen_pipeline(prompt, 
                               latents=latents,
                               base_content=edit_content,
                               video_length=args.video_length, 
                               height=args.image_size[0], 
                               width=args.image_size[1], 
                               num_inference_steps=args.num_sampling_steps,
                            #    guidance_scale=1.0,
                               guidance_scale=args.guidance_scale,
                               motion_bucket_id=args.motion_bucket_id,
                               enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
    imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % args.run_time + '-imageio.mp4', videos[0], fps=8, quality=8) # highest quality is 10, lowest is 0
    print('save path {}'.format(args.save_img_path))

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/sample.yaml")
    args = parser.parse_args()

    main(OmegaConf.load(args.config))