Spaces:
Build error
Build error
File size: 9,758 Bytes
ccdf9bb 9f09b81 d1d9d76 9f09b81 d21fd5e 9f09b81 ccdf9bb 039e5e3 b2bf79b 039e5e3 ccdf9bb 25cbc9c 76c3c93 9f09b81 ad6702d d2bad0b b2bf79b d2bad0b ad6702d eb1dafb 46e4197 d2bad0b ccdf9bb 4cb7892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import copy
import torch
import numpy as np
import gradio as gr
from spoter_mod.skeleton_extractor import obtain_pose_data
from spoter_mod.normalization.body_normalization import normalize_single_dict as normalize_single_body_dict, BODY_IDENTIFIERS
from spoter_mod.normalization.hand_normalization import normalize_single_dict as normalize_single_hand_dict, HAND_IDENTIFIERS
model = torch.load("spoter-checkpoint.pth", map_location=torch.device('cpu'))
model.train(False)
HAND_IDENTIFIERS = [id + "_Left" for id in HAND_IDENTIFIERS] + [id + "_Right" for id in HAND_IDENTIFIERS]
GLOSS = ['book', 'drink', 'computer', 'before', 'chair', 'go', 'clothes', 'who', 'candy', 'cousin', 'deaf', 'fine',
'help', 'no', 'thin', 'walk', 'year', 'yes', 'all', 'black', 'cool', 'finish', 'hot', 'like', 'many', 'mother',
'now', 'orange', 'table', 'thanksgiving', 'what', 'woman', 'bed', 'blue', 'bowling', 'can', 'dog', 'family',
'fish', 'graduate', 'hat', 'hearing', 'kiss', 'language', 'later', 'man', 'shirt', 'study', 'tall', 'white',
'wrong', 'accident', 'apple', 'bird', 'change', 'color', 'corn', 'cow', 'dance', 'dark', 'doctor', 'eat',
'enjoy', 'forget', 'give', 'last', 'meet', 'pink', 'pizza', 'play', 'school', 'secretary', 'short', 'time',
'want', 'work', 'africa', 'basketball', 'birthday', 'brown', 'but', 'cheat', 'city', 'cook', 'decide', 'full',
'how', 'jacket', 'letter', 'medicine', 'need', 'paint', 'paper', 'pull', 'purple', 'right', 'same', 'son',
'tell', 'thursday']
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
def tensor_to_dictionary(landmarks_tensor: torch.Tensor) -> dict:
data_array = landmarks_tensor.numpy()
output = {}
for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
output[identifier] = data_array[:, landmark_index]
return output
def dictionary_to_tensor(landmarks_dict: dict) -> torch.Tensor:
output = np.empty(shape=(len(landmarks_dict["leftEar"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))
for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
output[:, landmark_index, 0] = [frame[0] for frame in landmarks_dict[identifier]]
output[:, landmark_index, 1] = [frame[1] for frame in landmarks_dict[identifier]]
return torch.from_numpy(output)
def greet(label, video0, video1):
if label == "Webcam":
video = video0
elif label == "Video":
video = video1
elif label == "X":
return {"A": 0.8, "B": 0.1, "C": 0.1}
else:
return {}
data = obtain_pose_data(video)
depth_map = np.empty(shape=(len(data.data_hub["nose_X"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))
for index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
depth_map[:, index, 0] = data.data_hub[identifier + "_X"]
depth_map[:, index, 1] = data.data_hub[identifier + "_Y"]
depth_map = torch.from_numpy(np.copy(depth_map))
depth_map = tensor_to_dictionary(depth_map)
keys = copy.copy(list(depth_map.keys()))
for key in keys:
data = depth_map[key]
del depth_map[key]
depth_map[key.replace("_Left", "_0").replace("_Right", "_1")] = data
depth_map = normalize_single_body_dict(depth_map)
depth_map = normalize_single_hand_dict(depth_map)
keys = copy.copy(list(depth_map.keys()))
for key in keys:
data = depth_map[key]
del depth_map[key]
depth_map[key.replace("_0", "_Left").replace("_1", "_Right")] = data
depth_map = dictionary_to_tensor(depth_map)
depth_map = depth_map - 0.5
inputs = depth_map.squeeze(0).to(device)
outputs = model(inputs).expand(1, -1, -1)
results = torch.nn.functional.softmax(outputs, dim=2).detach().numpy()[0, 0]
#temp
# results = {GLOSS[i]: float(results[i]) for i in range(100)}
results = {GLOSS[i]: float(results[i]) for i in range(15)}
#ende des temps
return results
label = gr.outputs.Label(num_top_classes=3, label="Top class probabilities")
demo = gr.Interface(fn=greet, inputs=[gr.Dropdown(["Webcam", "Video"], label="Please select the input type:", type="value"), gr.Video(source="webcam", label="Webcam recording", type="mp4"), gr.Video(source="upload", label="Video upload", type="mp4")], outputs=label,
title="SPOTER Sign language recognition",
description="""
<details>
<summary style="font-family: MonumentExpanded; color: rgb(218, 221, 216); font-size: 1em !important;" class="unselectable">
Instructions
</summary>
<ol>
<li> upload video in question
<ul>
<li> interview- or speech-style with only one person visible and no video cuts
<li> between thirty seconds and three minutes in length
</ul>
<li> click "Submit"
<li> if server is busy, your video will be queued up
<li> results will appear in "Results" panel and will be sent to your e-mail
<li> if you believe that our analysis is incorrect, you can "Flag" the video and we will review for accuracy
<li> see M. Boháček and H. Farid. Protecting President Zelenskyy against Deep Fakes, arXiv:2206.12043, 2022 [<a href="https://arxiv.org/abs/2206.12043#">preprint</a>]
</ol>
</details>
<details>
<summary style="font-family: MonumentExpanded; color: rgb(218, 221, 216); font-size: 1em !important;" class="unselectable">
Privacy
</summary>
We do not collect any user information. The videos are deleted from our servers after the analysis is completed, unless you directly flag them for inspection.
</details>
""",
article="",
css="""
@font-face {
font-family: Graphik;
font-weight: regular;
src: url("https://www.signlanguagerecognition.com/supplementary/GraphikRegular.otf") format("opentype");
}
@font-face {
font-family: Graphik;
font-weight: bold;
src: url("https://www.signlanguagerecognition.com/supplementary/GraphikBold.otf") format("opentype");
}
@font-face {
font-family: MonumentExpanded;
font-weight: regular;
src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Regular.otf") format("opentype");
}
@font-face {
font-family: MonumentExpanded;
font-weight: bold;
src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Ultrabold.otf") format("opentype");
}
html {
font-family: "Graphik";
}
h1 {
font-family: "MonumentExpanded";
}
#12 {
- background-image: linear-gradient(to left, #61D836, #6CB346) !important;
background-color: #61D836 !important;
}
#12:hover {
- background-image: linear-gradient(to left, #61D836, #6CB346) !important;
background-color: #6CB346 !important;
border: 0 !important;
border-color: 0 !important;
}
.dark .gr-button-primary {
--tw-gradient-from: #61D836;
--tw-gradient-to: #6CB346;
border: 0 !important;
border-color: 0 !important;
}
.dark .gr-button-primary:hover {
--tw-gradient-from: #64A642;
--tw-gradient-to: #58933B;
border: 0 !important;
border-color: 0 !important;
}
.gr-prose li {
margin-top: 0 !important;
margin-bottom: 0 !important;
}
.gr-prose ol ol, .gr-prose ol ul, .gr-prose ul ol, .gr-prose ul ul {
margin-top: 0 !important;
margin-bottom: 0 !important;
}
.gr-prose h1 {
font-size: 1.75em !important;
text-align: left !important;
}
.unselectable {
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
""",
cache_examples=True
)
demo.launch(debug=True)
|