Spaces:
Running
Running
File size: 4,426 Bytes
3dfb6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 8 14:53:45 2025
@author: mritchey
"""
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\weather api\app.py"
import glob
import os
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
@st.cache_data
def get_weather_data(lat, lon, start_date, end_date):
url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
df = pd.read_json(url).reset_index()
data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
data['time'] = pd.to_datetime(data['time'])
data['date'] = pd.to_datetime(data['time'].dt.date)
data = data.query("temperature_2m==temperature_2m")
data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
'precipitation': ['sum'],
'windspeed_10m': ['min', 'mean', 'max'],
'windgusts_10m': ['min', 'mean', 'max']
})
data_agg.columns = data_agg.columns.to_series().str.join('_')
data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
return data.drop(columns=['date']), data_agg
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
address = st.sidebar.text_input(
"Address", "1000 Main St, Cincinnati, OH 45202")
start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2022, 9, 28))
end_date = st.sidebar.date_input("End Date", pd.Timestamp(2022, 9, 30))
type_var = st.sidebar.selectbox(
'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
lat, lon = geocode(address)
df_all, df_all_agg = get_weather_data(lat, lon, start_date, end_date)
# Keys
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
'Temp': 't2m', 'Precipitation': 'tp'}
variable = var_key[type_var]
unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
'Temp': 'F', 'Precipitation': 'In.'}
unit = unit_key[type_var]
cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
'Precipitation': ['precipitation']}
cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
'windgusts_10m_max'],
'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
'windspeed_10m_max'],
'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
'Precipitation': ['precipitation_sum']}
if hourly_daily == 'Hourly':
cols = cols_key[type_var]
else:
cols = cols_key_agg[type_var]
if hourly_daily == 'Hourly':
fig = px.line(df_all, x="time", y=cols[0])
df_downloald = df_all
else:
fig = px.line(df_all_agg.reset_index(), x="date", y=cols[0])
df_downloald = df_all_agg.reset_index()
with col1:
st.title('Weather Data')
st.plotly_chart(fig)
csv = convert_df(df_downloald)
st.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{start_date}.csv',
mime='text/csv')
with col2:
st.title('')
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|