File size: 4,426 Bytes
3dfb6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
"""
Created on Tue Apr  8 14:53:45 2025

@author: mritchey
"""

# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\weather api\app.py"
import glob
import os
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim


def geocode(address):
    try:
        address2 = address.replace(' ', '+').replace(',', '%2C')
        df = pd.read_json(
            f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
        results = df.iloc[:1, 0][0][0]['coordinates']
        lat, lon = results['y'], results['x']
    except:
        geolocator = Nominatim(user_agent="GTA Lookup")
        geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
        location = geolocator.geocode(address)
        lat, lon = location.latitude, location.longitude
    return lat, lon



@st.cache_data
def get_weather_data(lat, lon, start_date, end_date):

    url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
    df = pd.read_json(url).reset_index()
    data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
    data['time'] = pd.to_datetime(data['time'])
    data['date'] = pd.to_datetime(data['time'].dt.date)
    data = data.query("temperature_2m==temperature_2m")

    data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
                                           'precipitation': ['sum'],
                                           'windspeed_10m': ['min', 'mean', 'max'],
                                           'windgusts_10m': ['min', 'mean', 'max']
                                           })
    data_agg.columns = data_agg.columns.to_series().str.join('_')
    data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
    return data.drop(columns=['date']), data_agg


@st.cache_data
def convert_df(df):
    return df.to_csv(index=0).encode('utf-8')


st.set_page_config(layout="wide")
col1, col2 = st.columns((2))


address = st.sidebar.text_input(
    "Address", "1000 Main St, Cincinnati, OH 45202")
start_date = st.sidebar.date_input("Start Date",  pd.Timestamp(2022, 9, 28))
end_date = st.sidebar.date_input("End Date",  pd.Timestamp(2022, 9, 30))
type_var = st.sidebar.selectbox(
    'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))


start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")

lat, lon = geocode(address)

df_all, df_all_agg = get_weather_data(lat, lon, start_date, end_date)

# Keys
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
           'Temp': 't2m', 'Precipitation': 'tp'}

variable = var_key[type_var]

unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
            'Temp': 'F', 'Precipitation': 'In.'}
unit = unit_key[type_var]

cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
            'Precipitation': ['precipitation']}

cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
                         'windgusts_10m_max'],
                'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
                         'windspeed_10m_max'],
                'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
                'Precipitation': ['precipitation_sum']}

if hourly_daily == 'Hourly':
    cols = cols_key[type_var]
else:
    cols = cols_key_agg[type_var]

if hourly_daily == 'Hourly':
    fig = px.line(df_all, x="time", y=cols[0])
    df_downloald = df_all
else:
    fig = px.line(df_all_agg.reset_index(), x="date", y=cols[0])
    df_downloald = df_all_agg.reset_index()

with col1:
    st.title('Weather Data')
    st.plotly_chart(fig)

    csv = convert_df(df_downloald)

    st.download_button(
        label="Download data as CSV",
        data=csv,
        file_name=f'{start_date}.csv',
        mime='text/csv')


with col2:
    st.title('')


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)