Spaces:
Runtime error
Runtime error
File size: 6,056 Bytes
ace7fa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 14 10:35:25 2022
@author: mritchey
"""
import datetime
import glob
import os
import urllib.request
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
import plotly.express as px
import rasterio
import rioxarray
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from joblib import Parallel, delayed
from matplotlib import colors as colors
from streamlit_folium import st_folium
from threading import Thread
def download_file_get_data(url, rows, columns):
file = urllib.request.urlretrieve(url, url[-23:])[0]
rds = rioxarray.open_rasterio(file)
wind_mph = rds.rio.reproject("EPSG:4326")[0, rows, columns].values*2.23694
time = url[-15:-11]
return [wind_mph, time]
def threading(df_input, func_input):
starttime = time.time()
tasks_thread = df_input
results_thread = []
def thread_func(value_input):
response = func_input(value_input)
results_thread.append(response)
return True
threads = []
for i in range(len(tasks_thread)):
process = Thread(target=thread_func, args=[tasks_thread[i]])
process.start()
threads.append(process)
for process in threads:
process.join()
print(f'Time: {str(round((time.time()-starttime)/60,5))} Minutes')
return results_thread
def mapvalue2color(value, cmap):
if np.isnan(value):
return (1, 0, 0, 0)
else:
return colors.to_rgba(cmap(value), 0.7)
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
@st.cache
def get_grib_data(url, d, t):
file = urllib.request.urlretrieve(url, f'{d}{t}{type_wind}.grib2')[0]
return file
# @st.cache
def graph_entire_day(d, rows, columns):
year, month, day = d[:4], d[4:6], d[6:8]
times = [f'0{str(i)}'[-2:] for i in range(0, 24)]
urls = [
f'https://mtarchive.geol.iastate.edu/{year}/{month}/{day}/grib2/ncep/RTMA/{d}{t}00_{type_wind.upper()}.grib2' for t in times]
results = Parallel(n_jobs=4)(
delayed(download_file_get_data)(i, rows, columns) for i in urls)
df_all = pd.DataFrame(results, columns=['MPH', 'Time'])
df_all['MPH'] = df_all['MPH'].round(2)
df_all['Time'] = pd.to_datetime(d+df_all['Time'], format='%Y%m%d%H%M')
return df_all
@st.cache
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
# try:
# for i in glob.glob('*.grib2'):
# try:
# os.remove(i)
# except:
# pass
# except:
# pass
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
address = st.sidebar.text_input(
"Address", "123 Main Street, Columbus, OH 43215")
d = st.sidebar.date_input(
"Date", pd.Timestamp(2022, 9, 28)).strftime('%Y%m%d')
time = st.sidebar.selectbox('Time:', ('12 AM', '6 AM', '12 PM', '6 PM',))
type_wind = st.sidebar.selectbox('Type:', ('Gust', 'Wind'))
entire_day = st.sidebar.radio(
'Graph Entire Day (Takes a Bit):', ('No', 'Yes'))
if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
t = '0000'
else:
t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
year, month, day = d[:4], d[4:6], d[6:8]
url = f'https://mtarchive.geol.iastate.edu/{year}/{month}/{day}/grib2/ncep/RTMA/{d}{t}_{type_wind.upper()}.grib2'
file = get_grib_data(url, d, t)
lat, lon = geocode(address)
rds = rioxarray.open_rasterio(file)
projected = rds.rio.reproject("EPSG:4326")
wind_mph = projected.sel(x=lon, y=lat, method="nearest").values*2.23694
affine = projected.rio.transform()
rows, columns = rasterio.transform.rowcol(affine, lon, lat)
size = 40
projected2 = projected[0, rows-size:rows+size, columns-size:columns+size]
img = projected2.values*2.23694
boundary = projected2.rio.bounds()
left, bottom, right, top = boundary
img[img < 0.0] = np.nan
clat = (bottom + top)/2
clon = (left + right)/2
vmin = np.floor(np.nanmin(img))
vmax = np.ceil(np.nanmax(img))
colormap = cm.LinearColormap(
colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
m = folium.Map(location=[lat, lon], zoom_start=9, height=500)
folium.Marker(
location=[lat, lon],
popup=f"{wind_mph[0].round(2)} MPH").add_to(m)
folium.raster_layers.ImageOverlay(
image=img,
name='Wind Speed Map',
opacity=.8,
bounds=[[bottom, left], [top, right]],
colormap=lambda value: mapvalue2color(value, colormap)
).add_to(m)
folium.LayerControl().add_to(m)
colormap.caption = 'Wind Speed: MPH'
m.add_child(colormap)
with col1:
st.title('RTMA Model')
url_error='https://mattritchey-rtma.hf.space/'
link = f'[If RTMA not working click here]({url_error})'
st.markdown(link, unsafe_allow_html=True)
st.write(
f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
st_folium(m, height=500)
if entire_day == 'Yes':
df_all = graph_entire_day(d, rows, columns)
fig = px.line(df_all, x="Time", y="MPH")
with col2:
st.title('Analysis')
st.plotly_chart(fig)
csv = convert_df(df_all)
st.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{d}.csv',
mime='text/csv')
else:
pass
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True) |