File size: 5,652 Bytes
81e5514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9750b
81e5514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9750b
81e5514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  8 03:39:02 2023

@author: mritchey
"""
# streamlit run "hail all.py"

import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
from vincenty import vincenty
import duckdb
import os
import requests
import urllib

geocode_key=os.environ["geocode_key"]
st.set_page_config(layout="wide")


@st.cache_data
def convert_df(df):
    return df.to_csv(index=0).encode('utf-8')


def duck_sql(sql_code):
    con = duckdb.connect()
    con.execute("PRAGMA threads=2")
    con.execute("PRAGMA enable_object_cache")
    return con.execute(sql_code).df()


def get_data(lat, lon, date_str):
    code = f"""
        select "#ZTIME" as "Date_utc", LON, LAT, MAXSIZE 
          from 
          'data/*.parquet'
                 where LAT<={lat}+1 and LAT>={lat}-1
                 and LON<={lon}+1 and LON>={lon}-1
                 and "#ZTIME"<={date_str}
    
    """
    return duck_sql(code)


def map_location(address, lat, lon):

    m = folium.Map(location=[lat, lon],

                   zoom_start=9,
                   height=400)
    folium.Marker(
        location=[lat, lon],
        tooltip=f'Address: {address}',
    ).add_to(m)

    return m


def distance(x):
    left_coords = (x[0], x[1])
    right_coords = (x[2], x[3])
    return vincenty(left_coords, right_coords, miles=True)


def geocode(address):
    try:
        try:
            address2 = address.replace(' ', '+').replace(',', '%2C')
            df = pd.read_json(
                f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
            results = df.iloc[:1, 0][0][0]['coordinates']
            lat, lon = results['y'], results['x']
        except:
            geolocator = Nominatim(user_agent="GTA Lookup")
            geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
            location = geolocator.geocode(address)
            lat, lon = location.latitude, location.longitude
    except:
        try:
            address = urllib.parse.quote(address)
            url = 'https://api.geocod.io/v1.7/geocode?q=+'+address+f'&api_key={geocode_key}'
            json_reponse=requests.get(url,verify=False).json()
            lat,lon = json_reponse['results'][0]['location'].values()
        except:
            st.header("Sorry...Did not Find Address. Try to Correct with Google or just use City, State & Zip.")
            st.header("")
            st.header("")
    return lat, lon



#Side Bar
address = st.sidebar.text_input("Address", "Dallas, TX")
date = st.sidebar.date_input("Loss Date (Max)",  pd.Timestamp(2024, 12, 11), key='date') # change here
show_data = st.sidebar.selectbox('Show Data At Least Within:', ('Show All', '1 Mile', '3 Miles', '5 Miles'))

#Geocode Addreses
date_str=date.strftime("%Y%m%d")

lat, lon = geocode(address)

#Filter Data
df_hail_cut = get_data(lat,lon, date_str)


df_hail_cut["Lat_address"] = lat
df_hail_cut["Lon_address"] = lon
df_hail_cut['Miles to Hail'] = [
    distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2)

df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
df_hail_cut['Category'] =  np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
                                            np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
                                             np.where( df_hail_cut['Miles to Hail'] < 5, "Within 5 Miles",
                                                     np.where(df_hail_cut['Miles to Hail'] < 10, "Within 10 Miles", 'Other'))))

df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
                                   columns='Category',
                                   values='MAXSIZE',
                                   aggfunc='max')

cols = df_hail_cut_group.columns
cols_focus = [ "Within 1 Mile","Within 3 Miles",
              "Within 5 Miles", "Within 10 Miles"]

missing_cols = set(cols_focus)-set(cols)
for c in missing_cols:
    df_hail_cut_group[c] = np.nan
    
#Filter
df_hail_cut_group2 = df_hail_cut_group[cols_focus]

if show_data=='Show All':
    pass
else:
    df_hail_cut_group2 = df_hail_cut_group2.query(
    f"`Within {show_data}`==`Within {show_data}`")

for i in range(len(cols_focus)-1):
    df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
                                                   df_hail_cut_group2[cols_focus[i]].fillna(0),
                                                   df_hail_cut_group2[cols_focus[i]],
                                                   df_hail_cut_group2[cols_focus[i+1]])


df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)

df_hail_cut_group2.index=pd.to_datetime(df_hail_cut_group2.index,format='%Y%m%d')
df_hail_cut_group2.index=df_hail_cut_group2.index.strftime("%Y-%m-%d")


#Map Data
m = map_location(address, lat, lon)

#Display
col1, col2 = st.columns((3, 2))

with col1:
    st.header('Estimated Maximum Hail Size')
    st.write('Data from 2010 to 2024-12-11') # change here
    df_hail_cut_group2
     
    data=df_hail_cut_group2.reset_index()
    data['Address']=''
    data.loc[0,'Address']=address
    csv2 = convert_df(data)
    
    st.download_button(
        label="Download data as CSV",
        data=csv2,
        file_name=f'{address}_{date_str}.csv',
        mime='text/csv')
with col2:
    st.header('Map')
    st_folium(m, height=400)