File size: 3,181 Bytes
29df9bc
 
888d022
 
 
916e00a
29df9bc
 
916e00a
29df9bc
 
 
 
 
 
5b2069d
29df9bc
 
 
 
 
 
 
 
 
 
284c9cc
888d022
29df9bc
 
 
 
 
 
 
 
 
 
 
 
 
8cd49d2
29df9bc
 
 
 
 
 
 
 
 
888d022
29df9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6091f7
29df9bc
284c9cc
29df9bc
 
d73f75f
 
 
29df9bc
d604675
29df9bc
 
f6091f7
d604675
 
 
 
 
 
 
 
 
 
 
bf8ef54
 
 
 
 
 
29df9bc
284c9cc
29df9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import { createParser } from 'eventsource-parser';

export const OPENAI_API_HOST = process.env.OPENAI_API_HOST || "https://api.openai.com";
export const OPENAI_API_TYPE = process.env.OPENAI_API_TYPE || "openai";

export class LLMError extends Error {
  constructor(message, type, param, code) {
    super(message);
    this.name = 'LLMError';
    this.type = type;
    this.param = param;
    this.code = code;
  }
}

export const LLMStream = async (
  model,
  systemPrompt,
  temperature,
  messages
) => {
  let url = `${OPENAI_API_HOST}/v1/chat/completions`;
  const res = await fetch(url, {
    headers: {
      'Content-Type': 'application/json',
      ...(OPENAI_API_TYPE === 'openai' && {
        Authorization: `Bearer ${process.env.OPENAI_API_KEY}`
      })
    },
    method: 'POST',
    body: JSON.stringify({
      ...(OPENAI_API_TYPE === 'openai' && {model: model.id}),
      messages: [
        {
          role: 'system',
          content: systemPrompt,
        },
        ...messages,
      ],
      max_tokens: 1000,
      temperature: temperature,
      stream: true
    }),
  });

  const encoder = new TextEncoder();
  const decoder = new TextDecoder();

  if (res.status !== 200) {
    const result = await res.json();
    if (result.error) {
      throw new LLMError(
        result.error.message,
        result.error.type,
        result.error.param,
        result.error.code,
      );
    } else {
      throw new Error(
        `OpenAI API returned an error: ${
          decoder.decode(result?.value) || result.statusText
        }`,
      );
    }
  }

  const stream = new ReadableStream({
    async start(controller) {
      const onParse = async (event) => {
        if (event.type === 'event') {
          console.log(event);
          const data = event.data;
          try {
            if (data === '[DONE]') {
              return;
            }
            const json = JSON.parse(data);
            if (json.choices[0].finish_reason === "stop") {
              controller.close();
              return;
            } else if (json.choices[0].finish_reason === "function_call") {
              const fnName = json.choices[0].message.function_call.name;
              const args = json.choices[0].message.function_call.arguments;
          
              const fn = functions[fnName];
              const functionResult = await fn(...Object.values(JSON.parse(args)));
          
              console.log(`Function call: ${fnName}, Arguments: ${args}`);
              console.log(`Calling Function ${fnName} Result: ` + functionResult);
              
              const queue = encoder.encode(functionResult);
              controller.enqueue(queue);
            } else {
              const text = json.choices[0].delta.content;
              const queue = encoder.encode(text);
              controller.enqueue(queue);
            }
            
          } catch (e) {
            console.log(e);
            controller.error(e);
          }
        }
      };

      const parser = createParser(onParse);

      for await (const chunk of res.body) {
        parser.feed(decoder.decode(chunk));
      }
    },
  });

  return stream;
};