File size: 18,246 Bytes
9de53c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "import transformers\n",
    "from transformers import (\n",
    "    CONFIG_MAPPING,\n",
    "    MODEL_FOR_CAUSAL_LM_MAPPING,\n",
    "    AutoConfig,\n",
    "    AutoModelForCausalLM,\n",
    "    AutoTokenizer,\n",
    "    HfArgumentParser,\n",
    "    Trainer,\n",
    "    TrainingArguments,\n",
    "    default_data_collator,\n",
    "    is_torch_tpu_available,\n",
    "    set_seed,\n",
    ")\n",
    "\n",
    "from itertools import chain\n",
    "\n",
    "from transformers.testing_utils import CaptureLogger\n",
    "from transformers.trainer_utils import get_last_checkpoint\n",
    "# from transformers.utils import check_min_version, send_example_telemetry\n",
    "from transformers.utils.versions import require_version\n",
    "\n",
    "import datasets\n",
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn [4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcheck_min_version\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m4.23.0.dev0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/utils/__init__.py:32\u001b[0m, in \u001b[0;36mcheck_min_version\u001b[0;34m(min_version)\u001b[0m\n\u001b[1;32m     30\u001b[0m     error_message \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThis example requires a minimum version of \u001b[39m\u001b[39m{\u001b[39;00mmin_version\u001b[39m}\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m     31\u001b[0m error_message \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m but the version found is \u001b[39m\u001b[39m{\u001b[39;00m__version__\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m---> 32\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mImportError\u001b[39;00m(\n\u001b[1;32m     33\u001b[0m     error_message\n\u001b[1;32m     34\u001b[0m     \u001b[39m+\u001b[39m (\n\u001b[1;32m     35\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m     36\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mversions of HuggingFace Transformers.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m     37\u001b[0m     )\n\u001b[1;32m     38\u001b[0m )\n",
      "\u001b[0;31mImportError\u001b[0m: This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers."
     ]
    }
   ],
   "source": [
    "# check_min_version(\"4.23.0.dev0\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "require_version(\"datasets>=1.8.0\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "set_seed(37)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### Get all of the huggingface objects that we need: tokenzier, gpt2 model, poetry dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using custom data configuration merve--poetry-ca9a13ef5858cc3a\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Downloading and preparing dataset csv/merve--poetry to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a...\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ed56ee6b324647798b19ac7bf5accc40",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading data files:   0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "32c10441ff20404cb153f6b27f16a829",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading data:   0%|          | 0.00/606k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7ca47bc06937463e91d3948d7703ac64",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Extracting data files:   0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1631dbdc53d04b14a8a7733883bbd1cc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 tables [00:00, ? tables/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset csv downloaded and prepared to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a. Subsequent calls will reuse this data.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3c93229d66ad46d9a88da5f6a9528f2e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "raw_datasets = load_dataset(\"merve/poetry\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained('gpt2')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "config = AutoConfig.from_pretrained('gpt2')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Embedding(50257, 768)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    \"gpt2\",\n",
    "    config=config\n",
    ")\n",
    "model.resize_token_embeddings(len(tokenizer))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset({\n",
       "    features: ['author', 'content', 'poem name', 'age', 'type'],\n",
       "    num_rows: 573\n",
       "})"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "raw_datasets['train']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Mythology & Folklore'"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "raw_datasets['train']['type'][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['author', 'content', 'poem name', 'age', 'type'],\n",
       "        num_rows: 573\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "raw_datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "tok_logger = transformers.utils.logging.get_logger(\n",
    "    \"transformers.tokenization_utils_base\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "def tokenize_function(examples):\n",
    "    with CaptureLogger(tok_logger) as cl:\n",
    "        output = tokenizer(examples[text_column_name])\n",
    "    # clm input could be much much longer than block_size\n",
    "    if \"Token indices sequence length is longer than the\" in cl.out:\n",
    "        tok_logger.warning(\n",
    "            \"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits\"\n",
    "            \" before being passed to the model.\"\n",
    "        )\n",
    "    return output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "column_names = raw_datasets[\"train\"].column_names\n",
    "# text_column_name = \"text\" if \"text\" in column_names else column_names[0]\n",
    "text_column_name = \"content\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "82c09dbdfa1a47d79607a4c9729fb286",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Running tokenizer on dataset:   0%|          | 0/1 [00:00<?, ?ba/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Token indices sequence length is longer than the specified maximum sequence length for this model (7725 > 1024). Running this sequence through the model will result in indexing errors\n",
      "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model.\n"
     ]
    }
   ],
   "source": [
    "tokenized_datasets = raw_datasets.map(\n",
    "    tokenize_function,\n",
    "    batched=True,\n",
    "    # num_proc=data_args.preprocessing_num_workers,\n",
    "    remove_columns=column_names,\n",
    "    # load_from_cache_file=not data_args.overwrite_cache,\n",
    "    desc=\"Running tokenizer on dataset\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [],
   "source": [
    "block_size = tokenizer.model_max_length"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.\n",
    "def group_texts(examples):\n",
    "    # Concatenate all texts.\n",
    "    concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}\n",
    "    total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
    "    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
    "    # customize this part to your needs.\n",
    "    if total_length >= block_size:\n",
    "        total_length = (total_length // block_size) * block_size\n",
    "    # Split by chunks of max_len.\n",
    "    result = {\n",
    "        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]\n",
    "        for k, t in concatenated_examples.items()\n",
    "    }\n",
    "    result[\"labels\"] = result[\"input_ids\"].copy()\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ca2f64461e304df6aecb16e8cfcd42ac",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Grouping texts in chunks of 1024:   0%|          | 0/1 [00:00<?, ?ba/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "lm_datasets = tokenized_datasets.map(\n",
    "    group_texts,\n",
    "    batched=True,\n",
    "    # num_proc=data_args.preprocessing_num_workers,\n",
    "    # load_from_cache_file=not data_args.overwrite_cache,\n",
    "    desc=f\"Grouping texts in chunks of {block_size}\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dataset = lm_datasets[\"train\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Do the fine-tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize our Trainer\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    # args=training_args,\n",
    "    train_dataset=train_dataset,\n",
    "    # eval_dataset=eval_dataset,\n",
    "    tokenizer=tokenizer,\n",
    "    # Data collator will default to DataCollatorWithPadding, so we change it.\n",
    "    data_collator=default_data_collator,\n",
    "    # compute_metrics=compute_metrics\n",
    "    # if training_args.do_eval and not is_torch_tpu_available()\n",
    "    # else None,\n",
    "    # preprocess_logits_for_metrics=preprocess_logits_for_metrics\n",
    "    # if training_args.do_eval and not is_torch_tpu_available()\n",
    "    # else None,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "***** Running training *****\n",
      "  Num examples = 171\n",
      "  Num Epochs = 3\n",
      "  Instantaneous batch size per device = 8\n",
      "  Total train batch size (w. parallel, distributed & accumulation) = 8\n",
      "  Gradient Accumulation steps = 1\n",
      "  Total optimization steps = 66\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "59ebc6f251bd42e4bd3474b574614d1f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/66 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
      "\n",
      "\n",
      "Saving model checkpoint to tmp_trainer\n",
      "Configuration saved in tmp_trainer/config.json\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'train_runtime': 2967.2818, 'train_samples_per_second': 0.173, 'train_steps_per_second': 0.022, 'train_loss': 4.249474265358665, 'epoch': 3.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Model weights saved in tmp_trainer/pytorch_model.bin\n",
      "tokenizer config file saved in tmp_trainer/tokenizer_config.json\n",
      "Special tokens file saved in tmp_trainer/special_tokens_map.json\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "***** train metrics *****\n",
      "  epoch                    =        3.0\n",
      "  train_loss               =     4.2495\n",
      "  train_runtime            = 0:49:27.28\n",
      "  train_samples            =        171\n",
      "  train_samples_per_second =      0.173\n",
      "  train_steps_per_second   =      0.022\n"
     ]
    }
   ],
   "source": [
    "# Training\n",
    "checkpoint = None\n",
    "train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
    "trainer.save_model()  # Saves the tokenizer too for easy upload\n",
    "\n",
    "metrics = train_result.metrics\n",
    "\n",
    "max_train_samples = (len(train_dataset))\n",
    "metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
    "\n",
    "trainer.log_metrics(\"train\", metrics)\n",
    "trainer.save_metrics(\"train\", metrics)\n",
    "trainer.save_state()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10.6 ('augmented_poetry')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "00664817f4a09ab74dd392ee5a8d12e3606381c26df296db9ea5c334bb5d1b65"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}