File size: 4,832 Bytes
1b7e337
968f0c3
1b7e337
 
 
60d260f
968f0c3
1b7e337
 
 
487a9af
 
1b7e337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487a9af
1b7e337
 
 
487a9af
 
 
 
1b7e337
487a9af
 
 
 
1b7e337
 
 
 
 
 
 
 
 
487a9af
1b7e337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487a9af
 
968f0c3
1b7e337
 
968f0c3
 
 
 
60d260f
 
 
 
 
 
 
487a9af
a3a37f1
 
 
 
b2f5c8e
 
968f0c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image, ImageDraw
import numpy as np
from torch import nn
import gradio as gr
import os

feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")

# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb

def cityscapes_palette():
    """Cityscapes palette for external use."""
    return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
            [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0],
            [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60],
            [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100],
            [0, 0, 230], [119, 11, 32]]

def cityscapes_classes():
    """Cityscapes class names for external use."""
    return [
        'road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
        'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky',
        'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
        'bicycle'
    ]

def annotation(image:ImageDraw, color_seg:np.array):
    assert image.size == (1024, 1024)
    assert color_seg.shape == (1024, 1024, 3)
    blocks = 4 # 4x4 sub grid
    step_size = 256 # sub square edge size

    draw = ImageDraw.Draw(image)

    sub_square_xy = [(x,y) for x in range(0, blocks * step_size, step_size) for y in range(0, blocks * step_size, step_size)]
    # print(f"{sub_square_xy=}")
    for (x,y) in sub_square_xy:
        reduced_seg = color_seg.sum(axis=2) # collapsing all colors into 1024 x 1024
        # print(f"{reduced_seg.shape=}")
        
        sub_square_seg = reduced_seg[ y:y+step_size, x:x+step_size]
        # print(f"{sub_square_seg.shape=}, {sub_square_seg.sum()}")
        
        if (sub_square_seg.sum() > 100000): 
            print("light found at square ", x, y)
            draw.rectangle([(x, y), (x + step_size, y + step_size)], outline=128, width=3)

def call(image): #nparray

    resized = Image.fromarray(image).resize((1024,1024))
    resized_image = np.array(resized)
    print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3

    # resized_image = Image.fromarray(resized_image_np)
    # print(f"{resized_image=}")

    inputs = feature_extractor(images=resized_image, return_tensors="pt")

    outputs  = model(**inputs)
    print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
    # print(f"{logits}")

    # First, rescale logits to original image size
    interpolated_logits =  nn.functional.interpolate(
        outputs.logits,
        size=[1024, 1024], #resized_image.size[::-1], # (height, width)
        mode='bilinear',
        align_corners=False)
    print(f"{interpolated_logits.shape=}, {outputs.logits.shape=}") # 1, 19, 1024, 1024

    # Second, apply argmax on the class dimension
    seg = interpolated_logits.argmax(dim=1)[0]
    print(f"{seg.shape=}")
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
    print(f"{color_seg.shape=}")

    for label, color in enumerate(cityscapes_palette()):
        if (label == 6): color_seg[seg == label, :] = color

    # Convert to BGR
    color_seg = color_seg[..., ::-1]
    print(f"{color_seg.shape=}")

    # Show image + mask
    img = np.array(resized_image) * 0.5 + color_seg * 0.5
    img = img.astype(np.uint8)

    out_im_file = Image.fromarray(img)
    annotation(out_im_file, color_seg)

    return out_im_file

# original_image = Image.open("./examples/1.jpg")
# print(f"{np.array(original_image).shape=}") # eg 729, 1000, 3

# out = call(original_image)
# out.save("out2.jpeg")

title = "Traffic Light Detector"
description = "Experiment traffic light detection to evaluate the value of captcha security controls"

iface = gr.Interface(fn=call, 
                     inputs="image", 
                     outputs="image", 
                     title=title, 
                     description=description, 
                     examples=[
                       os.path.join(os.path.dirname(__file__), "examples/1.jpg"),
                       os.path.join(os.path.dirname(__file__), "examples/2.jpg"),
                    #    os.path.join(os.path.dirname(__file__), "examples/3.jpg"),
                    #    os.path.join(os.path.dirname(__file__), "examples/4.jpg"),
                    #    os.path.join(os.path.dirname(__file__), "examples/5.jpg"),
                    #    os.path.join(os.path.dirname(__file__), "examples/6.jpg"),
                     ],
                     thumbnail="thumbnail.webp")
iface.launch()