File size: 4,974 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/open-mmlab/mmdetection/blob/master/tests/test_models/test_utils/test_position_encoding.py
# ------------------------------------------------------------------------------------------------


import pytest
import torch

from detrex.layers import PositionEmbeddingLearned, PositionEmbeddingSine

from utils import (
    DABPositionEmbeddingLearned,
    DABPositionEmbeddingSine,
    DeformablePositionEmbeddingSine,
)


def test_sine_position_embedding(num_pos_feats=16, batch_size=2):
    # test invalid type of scale
    with pytest.raises(AssertionError):
        module = PositionEmbeddingSine(num_pos_feats, scale=(3.0,), normalize=True)

    module = PositionEmbeddingSine(num_pos_feats)
    h, w = 10, 6
    mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int)
    assert not module.normalize
    out = module(mask)
    assert out.shape == (batch_size, num_pos_feats * 2, h, w)

    # set normalize
    module = PositionEmbeddingSine(num_pos_feats, normalize=True)
    assert module.normalize
    out = module(mask)
    assert out.shape == (batch_size, num_pos_feats * 2, h, w)


def test_learned_position_embedding(
    num_pos_feats=16, row_num_embed=10, col_num_embed=10, batch_size=2
):
    module = PositionEmbeddingLearned(num_pos_feats, row_num_embed, col_num_embed)
    assert module.row_embed.weight.shape == (row_num_embed, num_pos_feats)
    assert module.col_embed.weight.shape == (col_num_embed, num_pos_feats)
    h, w = 10, 6
    mask = torch.rand(batch_size, h, w) > 0.5
    out = module(mask)
    assert out.shape == (batch_size, num_pos_feats * 2, h, w)


def test_sine_position_embedding_output(num_pos_feats=16, batch_size=2):
    # test position embedding without normalize
    module_new = PositionEmbeddingSine(num_pos_feats)
    module_original = DABPositionEmbeddingSine(num_pos_feats)
    h, w = 10, 6
    mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int)

    output_new = module_new(mask)
    output_original = module_original(mask)

    torch.allclose(output_new.sum(), output_original.sum())

    # test position embedding with normalize
    module_new = PositionEmbeddingSine(num_pos_feats, normalize=True)
    module_original = DABPositionEmbeddingSine(num_pos_feats, normalize=True)
    h, w = 10, 6
    mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int)

    output_new = module_new(mask)
    output_original = module_original(mask)

    torch.allclose(output_new.sum(), output_original.sum())


def test_sine_position_embedding_deformable(num_pos_feats=16, batch_size=2):
    # test position embedding used in Deformable-DETR without normalize
    # test position embedding without normalize
    module_new = PositionEmbeddingSine(num_pos_feats, offset=-0.5)
    module_original = DeformablePositionEmbeddingSine(num_pos_feats)
    h, w = 10, 6
    mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int)

    output_new = module_new(mask)
    output_original = module_original(mask)

    torch.allclose(output_new.sum(), output_original.sum())

    # test position embedding with normalize
    module_new = PositionEmbeddingSine(num_pos_feats, offset=-0.5, normalize=True)
    module_original = DeformablePositionEmbeddingSine(num_pos_feats, normalize=True)
    h, w = 10, 6
    mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int)

    output_new = module_new(mask)
    output_original = module_original(mask)

    torch.allclose(output_new.sum(), output_original.sum())


def test_learned_position_embedding_output(
    num_pos_feats=16, row_num_embed=10, col_num_embed=10, batch_size=2
):
    module_new = PositionEmbeddingLearned(num_pos_feats, row_num_embed, col_num_embed)
    module_original = DABPositionEmbeddingLearned(num_pos_feats)

    # transfer weights
    module_new.col_embed.weight = module_original.col_embed.weight
    module_new.row_embed.weight = module_original.row_embed.weight

    h, w = 10, 6
    mask = torch.rand(batch_size, h, w) > 0.5
    output_new = module_new(mask)
    output_original = module_original(mask)

    torch.allclose(output_new.sum(), output_original.sum())