File size: 6,426 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch

from detrex.layers import ConditionalCrossAttention, ConditionalSelfAttention

from utils import OriginalConditionalAttentionDecoder, OriginalConditionalAttentionEncoder


def test_cond_self_attention():
    # hyper-parameters
    d_model = 256
    nhead = 8

    # module definition
    cond_attention_original = OriginalConditionalAttentionEncoder(d_model=d_model, nhead=nhead)
    cond_attention_detrex = ConditionalSelfAttention(embed_dim=d_model, num_heads=nhead)

    # weight transfer
    cond_attention_detrex.query_content_proj.weight = (
        cond_attention_original.sa_qcontent_proj.weight
    )
    cond_attention_detrex.query_content_proj.bias = cond_attention_original.sa_qcontent_proj.bias
    cond_attention_detrex.query_pos_proj.weight = cond_attention_original.sa_qpos_proj.weight
    cond_attention_detrex.query_pos_proj.bias = cond_attention_original.sa_qpos_proj.bias
    cond_attention_detrex.key_content_proj.weight = cond_attention_original.sa_kcontent_proj.weight
    cond_attention_detrex.key_content_proj.bias = cond_attention_original.sa_kcontent_proj.bias
    cond_attention_detrex.key_pos_proj.weight = cond_attention_original.sa_kpos_proj.weight
    cond_attention_detrex.key_pos_proj.bias = cond_attention_original.sa_kpos_proj.bias
    cond_attention_detrex.value_proj.weight = cond_attention_original.sa_v_proj.weight
    cond_attention_detrex.value_proj.bias = cond_attention_original.sa_v_proj.bias
    cond_attention_detrex.out_proj.weight = cond_attention_original.self_attn.out_proj.weight
    cond_attention_detrex.out_proj.bias = cond_attention_original.self_attn.out_proj.bias

    # test output
    input = torch.randn(16, 1, 256)  # (n, b, c)
    query_pos = torch.randn(16, 1, 256)

    # self-attention with short-cut
    original_output = cond_attention_original(tgt=input, query_pos=query_pos)[0] + input

    detrex_output = cond_attention_detrex(
        query=input, key=input, value=input, query_pos=query_pos, key_pos=query_pos
    )

    torch.allclose(original_output.sum(), detrex_output.sum())


def test_cond_decoder():
    # hyper-parameters
    d_model = 256
    nhead = 8

    # original conditional decoder
    cond_decoder_original = OriginalConditionalAttentionDecoder(
        d_model=d_model,
        nhead=nhead,
    )

    # detrex self-attn + cross-attn
    detrex_cond_self_attn = ConditionalSelfAttention(
        embed_dim=d_model,
        num_heads=nhead,
    )
    detrex_cond_cross_attn = ConditionalCrossAttention(embed_dim=d_model, num_heads=nhead)

    # weight transfer
    detrex_cond_self_attn.query_content_proj.weight = cond_decoder_original.sa_qcontent_proj.weight
    detrex_cond_self_attn.query_content_proj.bias = cond_decoder_original.sa_qcontent_proj.bias
    detrex_cond_self_attn.query_pos_proj.weight = cond_decoder_original.sa_qpos_proj.weight
    detrex_cond_self_attn.query_pos_proj.bias = cond_decoder_original.sa_qpos_proj.bias
    detrex_cond_self_attn.key_content_proj.weight = cond_decoder_original.sa_kcontent_proj.weight
    detrex_cond_self_attn.key_content_proj.bias = cond_decoder_original.sa_kcontent_proj.bias
    detrex_cond_self_attn.key_pos_proj.weight = cond_decoder_original.sa_kpos_proj.weight
    detrex_cond_self_attn.key_pos_proj.bias = cond_decoder_original.sa_kpos_proj.bias
    detrex_cond_self_attn.value_proj.weight = cond_decoder_original.sa_v_proj.weight
    detrex_cond_self_attn.value_proj.bias = cond_decoder_original.sa_v_proj.bias
    detrex_cond_self_attn.out_proj.weight = cond_decoder_original.self_attn.out_proj.weight
    detrex_cond_self_attn.out_proj.bias = cond_decoder_original.self_attn.out_proj.bias

    detrex_cond_cross_attn.query_content_proj.weight = cond_decoder_original.ca_qcontent_proj.weight
    detrex_cond_cross_attn.query_content_proj.bias = cond_decoder_original.ca_qcontent_proj.bias
    detrex_cond_cross_attn.query_pos_proj.weight = cond_decoder_original.ca_qpos_proj.weight
    detrex_cond_cross_attn.query_pos_proj.bias = cond_decoder_original.ca_qpos_proj.bias
    detrex_cond_cross_attn.key_content_proj.weight = cond_decoder_original.ca_kcontent_proj.weight
    detrex_cond_cross_attn.key_content_proj.bias = cond_decoder_original.ca_kcontent_proj.bias
    detrex_cond_cross_attn.key_pos_proj.weight = cond_decoder_original.ca_kpos_proj.weight
    detrex_cond_cross_attn.key_pos_proj.bias = cond_decoder_original.ca_kpos_proj.bias
    detrex_cond_cross_attn.value_proj.weight = cond_decoder_original.ca_v_proj.weight
    detrex_cond_cross_attn.value_proj.bias = cond_decoder_original.ca_v_proj.bias
    detrex_cond_cross_attn.out_proj.weight = cond_decoder_original.cross_attn.out_proj.weight
    detrex_cond_cross_attn.out_proj.bias = cond_decoder_original.cross_attn.out_proj.bias
    detrex_cond_cross_attn.query_pos_sine_proj.weight = (
        cond_decoder_original.ca_qpos_sine_proj.weight
    )
    detrex_cond_cross_attn.query_pos_sine_proj.bias = cond_decoder_original.ca_qpos_sine_proj.bias

    # test output
    input = torch.randn(16, 1, 256)  # (n, b, c)
    query_pos = torch.randn(16, 1, 256)
    key_pos = torch.randn(16, 1, 256)
    query_sine_pos = torch.randn(16, 1, 256)

    original_output = cond_decoder_original(
        tgt=input, memory=input, query_pos=query_pos, pos=key_pos, query_sine_embed=query_sine_pos
    )

    # detrex cond attn output
    temp = detrex_cond_self_attn(
        query=input,
        key=input,
        value=input,
        query_pos=query_pos,
        key_pos=query_pos,
    )
    detrex_output = detrex_cond_cross_attn(
        query=temp,
        key=input,
        value=input,
        query_pos=query_pos,
        key_pos=key_pos,
        query_sine_embed=query_sine_pos,
        is_first_layer=True,
    )

    torch.allclose(original_output.sum(), detrex_output.sum())