File size: 12,751 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

import torch
import torch.nn as nn

from detrex.layers import FFN, BaseTransformerLayer, MultiheadAttention, TransformerLayerSequence


class PnPDetrTransformerEncoder(TransformerLayerSequence):
    def __init__(
        self,
        embed_dim: int = 256,
        num_heads: int = 8,
        attn_dropout: float = 0.1,
        feedforward_dim: int = 2048,
        ffn_dropout: float = 0.1,
        num_layers: int = 6,
        post_norm: bool = True,
        batch_first: bool = False,
    ):
        super(PnPDetrTransformerEncoder, self).__init__(
            transformer_layers=BaseTransformerLayer(
                attn=MultiheadAttention(
                    embed_dim=embed_dim,
                    num_heads=num_heads,
                    attn_drop=attn_dropout,
                    batch_first=batch_first,
                ),
                ffn=FFN(
                    embed_dim=embed_dim,
                    feedforward_dim=feedforward_dim,
                    ffn_drop=ffn_dropout,
                ),
                norm=nn.LayerNorm(
                    normalized_shape=embed_dim,
                ),
                operation_order=("self_attn", "norm", "ffn", "norm"),
            ),
            num_layers=num_layers,
        )
        self.embed_dim = self.layers[0].embed_dim
        self.pre_norm = self.layers[0].pre_norm

        if post_norm:
            self.post_norm_layer = nn.LayerNorm(self.embed_dim)
        else:
            self.post_norm_layer = None

    def forward(
        self,
        query,
        key,
        value,
        query_pos=None,
        key_pos=None,
        attn_masks=None,
        query_key_padding_mask=None,
        key_padding_mask=None,
        **kwargs,
    ):

        for layer in self.layers:
            query = layer(
                query,
                key,
                value,
                query_pos=query_pos,
                key_pos=key_pos,
                attn_masks=attn_masks,
                query_key_padding_mask=query_key_padding_mask,
                key_padding_mask=key_padding_mask,
                **kwargs,
            )

        if self.post_norm_layer is not None:
            query = self.post_norm_layer(query)
        return query


class PnPDetrTransformerDecoder(TransformerLayerSequence):
    def __init__(
        self,
        embed_dim: int = 256,
        num_heads: int = 8,
        attn_dropout: float = 0.1,
        feedforward_dim: int = 2048,
        ffn_dropout: float = 0.1,
        num_layers: int = 6,
        post_norm: bool = True,
        return_intermediate: bool = True,
        batch_first: bool = False,
    ):
        super(PnPDetrTransformerDecoder, self).__init__(
            transformer_layers=BaseTransformerLayer(
                attn=MultiheadAttention(
                    embed_dim=embed_dim,
                    num_heads=num_heads,
                    attn_drop=attn_dropout,
                    batch_first=batch_first,
                ),
                ffn=FFN(
                    embed_dim=embed_dim,
                    feedforward_dim=feedforward_dim,
                    ffn_drop=ffn_dropout,
                ),
                norm=nn.LayerNorm(
                    normalized_shape=embed_dim,
                ),
                operation_order=("self_attn", "norm", "cross_attn", "norm", "ffn", "norm"),
            ),
            num_layers=num_layers,
        )
        self.return_intermediate = return_intermediate
        self.embed_dim = self.layers[0].embed_dim

        if post_norm:
            self.post_norm_layer = nn.LayerNorm(self.embed_dim)
        else:
            self.post_norm_layer = None

    def forward(
        self,
        query,
        key,
        value,
        query_pos=None,
        key_pos=None,
        attn_masks=None,
        query_key_padding_mask=None,
        key_padding_mask=None,
        **kwargs,
    ):

        if not self.return_intermediate:
            for layer in self.layers:
                query = layer(
                    query,
                    key,
                    value,
                    query_pos=query_pos,
                    key_pos=key_pos,
                    attn_masks=attn_masks,
                    query_key_padding_mask=query_key_padding_mask,
                    key_padding_mask=key_padding_mask,
                    **kwargs,
                )

            if self.post_norm_layer is not None:
                query = self.post_norm_layer(query)[None]
            return query

        # return intermediate
        intermediate = []
        for layer in self.layers:
            query = layer(
                query,
                key,
                value,
                query_pos=query_pos,
                key_pos=key_pos,
                attn_masks=attn_masks,
                query_key_padding_mask=query_key_padding_mask,
                key_padding_mask=key_padding_mask,
                **kwargs,
            )

            if self.return_intermediate:
                if self.post_norm_layer is not None:
                    intermediate.append(self.post_norm_layer(query))
                else:
                    intermediate.append(query)

        return torch.stack(intermediate)


class SortSampler(nn.Module):
    def __init__(self, topk_ratio, input_dim, score_pred_net='2layer-fc', kproj_net='2layer-fc', unsample_abstract_number=30,pos_embed_kproj=False):
        super().__init__()
        self.topk_ratio = topk_ratio
        if score_pred_net == '2layer-fc-256':
            self.score_pred_net = nn.Sequential(nn.Conv2d(input_dim, input_dim, 1),
                                                 nn.ReLU(),
                                                 nn.Conv2d(input_dim, 1, 1))
        elif score_pred_net == '2layer-fc-16':
            self.score_pred_net = nn.Sequential(nn.Conv2d(input_dim, 16, 1),
                                                 nn.ReLU(),
                                                 nn.Conv2d(16, 1, 1))
        elif score_pred_net == '1layer-fc':
            self.score_pred_net = nn.Conv2d(input_dim, 1, 1)
        else:
            raise ValueError

        self.norm_feature = nn.LayerNorm(input_dim,elementwise_affine=False)
        self.unsample_abstract_number = unsample_abstract_number
        if kproj_net == '2layer-fc':
            self.k_proj = nn.Sequential(nn.Linear(input_dim, input_dim),
                                                nn.ReLU(),
                                                nn.Linear(input_dim, unsample_abstract_number))
        elif kproj_net == '1layer-fc':
            self.k_proj = nn.Linear(input_dim, unsample_abstract_number)
        else:
            raise ValueError
        self.v_proj = nn.Linear(input_dim, input_dim)
        self.pos_embed_kproj = pos_embed_kproj

    def forward(self, src, mask, pos_embed, sample_ratio):
        bs,c ,h, w  = src.shape
        sample_weight = self.score_pred_net(src).sigmoid().view(bs,-1)
        # sample_weight[mask] = sample_weight[mask].clone() * 0.
        # sample_weight.data[mask] = 0.
        sample_weight_clone = sample_weight.clone().detach()
        sample_weight_clone[mask] = -1.

        if sample_ratio==None:
            sample_ratio = self.topk_ratio
        ##max sample number:
        sample_lens = ((~mask).sum(1)*sample_ratio).int()
        max_sample_num = sample_lens.max()
        mask_topk = torch.arange(max_sample_num).expand(len(sample_lens), max_sample_num).to(sample_lens.device) > (sample_lens-1).unsqueeze(1)

        ## for sampling remaining unsampled points
        min_sample_num = sample_lens.min()

        sort_order = sample_weight_clone.sort(descending=True,dim=1)[1]
        sort_confidence_topk = sort_order[:,:max_sample_num]
        sort_confidence_topk_remaining = sort_order[:,min_sample_num:]
        ## flatten for gathering
        src = src.flatten(2).permute(2, 0, 1)
        src = self.norm_feature(src)

        src_sample_remaining = src.gather(0, sort_confidence_topk_remaining.permute(1, 0)[..., None].expand(-1, -1, c))

        ## this will maskout the padding and sampled points
        mask_unsampled = torch.arange(mask.size(1)).expand(len(sample_lens), mask.size(1)).to(sample_lens.device) < (sample_lens).unsqueeze(1)
        mask_unsampled = mask_unsampled | mask.gather(1, sort_order)
        mask_unsampled = mask_unsampled[:,min_sample_num:]

        ## abstract the unsampled points with attention
        if self.pos_embed_kproj:
            pos_embed_sample_remaining = pos_embed.gather(0, sort_confidence_topk_remaining.permute(1, 0)[..., None].expand(-1, -1, c))
            kproj = self.k_proj(src_sample_remaining+pos_embed_sample_remaining)
        else:
            kproj = self.k_proj(src_sample_remaining)
        kproj = kproj.masked_fill(
            mask_unsampled.permute(1,0).unsqueeze(2),
            float('-inf'),
        ).permute(1,2,0).softmax(-1)
        abs_unsampled_points = torch.bmm(kproj, self.v_proj(src_sample_remaining).permute(1,0,2)).permute(1,0,2)
        abs_unsampled_pos_embed = torch.bmm(kproj, pos_embed.gather(0,sort_confidence_topk_remaining.
                                                                          permute(1,0)[...,None].expand(-1,-1,c)).permute(1,0,2)).permute(1,0,2)
        abs_unsampled_mask = mask.new_zeros(mask.size(0),abs_unsampled_points.size(0))

        ## reg sample weight to be sparse with l1 loss
        sample_reg_loss = sample_weight.gather(1,sort_confidence_topk).mean()
        src_sampled = src.gather(0, sort_confidence_topk.permute(1,0)[...,None].expand(-1,-1,c)) *sample_weight.gather(1,sort_confidence_topk).permute(1,0).unsqueeze(-1)
        pos_embed_sampled = pos_embed.gather(0,sort_confidence_topk.permute(1,0)[...,None].expand(-1,-1,c))
        mask_sampled = mask_topk

        src = torch.cat([src_sampled, abs_unsampled_points])
        pos_embed = torch.cat([pos_embed_sampled,abs_unsampled_pos_embed])
        mask = torch.cat([mask_sampled, abs_unsampled_mask],dim=1)
        assert ((~mask).sum(1)==sample_lens+self.unsample_abstract_number).all()
        return src, sample_reg_loss, sort_confidence_topk, mask, pos_embed


class PnPDetrTransformer(nn.Module):
    def __init__(
        self, 
        encoder=None, 
        decoder=None,
        sample_topk_ratio=1/3.,
        score_pred_net='2layer-fc-256',
        kproj_net='2layer-fc',
        unsample_abstract_number=30,
        pos_embed_kproj=False,
    ):
        super(PnPDetrTransformer, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.embed_dim = self.encoder.embed_dim

        self.sampler = SortSampler(
            sample_topk_ratio, 
            self.embed_dim, 
            score_pred_net=score_pred_net, 
            kproj_net=kproj_net, 
            unsample_abstract_number=unsample_abstract_number, 
            pos_embed_kproj=pos_embed_kproj
        )

        self.init_weights()

    def init_weights(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, x, mask, query_embed, pos_embed, sample_ratio):
        bs, c, h, w = x.shape
        pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1
        )  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, h, w] -> [bs, h*w]
        x, sample_reg_loss, sort_confidence_topk, mask, pos_embed = self.sampler(x, mask, pos_embed, sample_ratio)
        memory = self.encoder(
            query=x,
            key=None,
            value=None,
            query_pos=pos_embed,
            query_key_padding_mask=mask,
        )
        target = torch.zeros_like(query_embed)
        decoder_output = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask,
        )
        decoder_output = decoder_output.transpose(1, 2)
        return decoder_output, sample_reg_loss