File size: 11,470 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# ------------------------------------------------------------------------
# Copyright (c) IDEA, Inc. and its affiliates.
# Modified from DINO https://github.com/IDEA-Research/DINO by Feng Li and Hao Zhang.
# ------------------------------------------------------------------------

from typing import Optional, List, Union
import torch
from torch import nn, Tensor
from torch.cuda.amp import autocast

from ...utils.utils import MLP, _get_clones, _get_activation_fn, gen_sineembed_for_position, inverse_sigmoid
from detrex.layers import MultiScaleDeformableAttention


class TransformerDecoder(nn.Module):

    def __init__(self, decoder_layer, num_layers, norm=None,
                 return_intermediate=False,
                 d_model=256, query_dim=4,
                 modulate_hw_attn=True,
                 num_feature_levels=1,
                 deformable_decoder=True,
                 decoder_query_perturber=None,
                 dec_layer_number=None,  # number of queries each layer in decoder
                 rm_dec_query_scale=True,
                 dec_layer_share=False,
                 dec_layer_dropout_prob=None,
                 ):
        super().__init__()
        if num_layers > 0:
            self.layers = _get_clones(decoder_layer, num_layers, layer_share=dec_layer_share)
        else:
            self.layers = []
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate
        assert return_intermediate, "support return_intermediate only"
        self.query_dim = query_dim
        assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
        self.num_feature_levels = num_feature_levels

        self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
        if not deformable_decoder:
            self.query_pos_sine_scale = MLP(d_model, d_model, d_model, 2)
        else:
            self.query_pos_sine_scale = None

        if rm_dec_query_scale:
            self.query_scale = None
        else:
            raise NotImplementedError
            self.query_scale = MLP(d_model, d_model, d_model, 2)
        self.bbox_embed = None
        self.class_embed = None

        self.d_model = d_model
        self.modulate_hw_attn = modulate_hw_attn
        self.deformable_decoder = deformable_decoder

        if not deformable_decoder and modulate_hw_attn:
            self.ref_anchor_head = MLP(d_model, d_model, 2, 2)
        else:
            self.ref_anchor_head = None

        self.decoder_query_perturber = decoder_query_perturber
        self.box_pred_damping = None

        self.dec_layer_number = dec_layer_number
        if dec_layer_number is not None:
            assert isinstance(dec_layer_number, list)
            assert len(dec_layer_number) == num_layers
            # assert dec_layer_number[0] ==

        self.dec_layer_dropout_prob = dec_layer_dropout_prob
        if dec_layer_dropout_prob is not None:
            assert isinstance(dec_layer_dropout_prob, list)
            assert len(dec_layer_dropout_prob) == num_layers
            for i in dec_layer_dropout_prob:
                assert 0.0 <= i <= 1.0

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()

    def forward(self, tgt, memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                refpoints_unsigmoid: Optional[Tensor] = None,  # num_queries, bs, 2
                # for memory
                level_start_index: Optional[Tensor] = None,  # num_levels
                spatial_shapes: Optional[Tensor] = None,  # bs, num_levels, 2
                valid_ratios: Optional[Tensor] = None,

                ):
        """
        Input:
            - tgt: nq, bs, d_model
            - memory: hw, bs, d_model
            - pos: hw, bs, d_model
            - refpoints_unsigmoid: nq, bs, 2/4
            - valid_ratios/spatial_shapes: bs, nlevel, 2
        """
        output = tgt

        intermediate = []
        reference_points = refpoints_unsigmoid.sigmoid()
        ref_points = [reference_points]

        for layer_id, layer in enumerate(self.layers):
            # preprocess ref points
            if self.training and self.decoder_query_perturber is not None and layer_id != 0:
                reference_points = self.decoder_query_perturber(reference_points)

            reference_points_input = reference_points[:, :, None] \
                                         * torch.cat([valid_ratios, valid_ratios], -1)[None, :]  # nq, bs, nlevel, 4
            query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # nq, bs, 256*2

            raw_query_pos = self.ref_point_head(query_sine_embed)  # nq, bs, 256
            pos_scale = self.query_scale(output) if self.query_scale is not None else 1
            query_pos = pos_scale * raw_query_pos

            output = layer(
                tgt=output,
                tgt_query_pos=query_pos,
                tgt_query_sine_embed=query_sine_embed,
                tgt_key_padding_mask=tgt_key_padding_mask,
                tgt_reference_points=reference_points_input,

                memory=memory,
                memory_key_padding_mask=memory_key_padding_mask,
                memory_level_start_index=level_start_index,
                memory_spatial_shapes=spatial_shapes,
                memory_pos=pos,

                self_attn_mask=tgt_mask,
                cross_attn_mask=memory_mask
            )

            # iter update
            if self.bbox_embed is not None:
                reference_before_sigmoid = inverse_sigmoid(reference_points)
                delta_unsig = self.bbox_embed[layer_id](output)
                outputs_unsig = delta_unsig + reference_before_sigmoid
                new_reference_points = outputs_unsig.sigmoid()

                reference_points = new_reference_points.detach()
                # if layer_id != self.num_layers - 1:
                ref_points.append(new_reference_points)

            intermediate.append(self.norm(output))

        return [
            [itm_out.transpose(0, 1) for itm_out in intermediate],
            [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points]
        ]


class DeformableTransformerDecoderLayer(nn.Module):

    def __init__(self, d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4,
                 use_deformable_box_attn=False,
                 key_aware_type=None,
                 ):
        super().__init__()

        # cross attention
        if use_deformable_box_attn:
            raise NotImplementedError
        else:
            self.cross_attn = MultiScaleDeformableAttention(
                embed_dim=d_model, num_levels=n_levels,
                num_heads=n_heads, num_points=n_points,
                batch_first=True,dropout=dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)

        self.key_aware_type = key_aware_type
        self.key_aware_proj = None

    def rm_self_attn_modules(self):
        self.self_attn = None
        self.dropout2 = None
        self.norm2 = None

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    @autocast(enabled=False)
    def forward(self,
                # for tgt
                tgt: Optional[Tensor],  # nq, bs, d_model
                tgt_query_pos: Optional[Tensor] = None,  # pos for query. MLP(Sine(pos))
                tgt_query_sine_embed: Optional[Tensor] = None,  # pos for query. Sine(pos)
                tgt_key_padding_mask: Optional[Tensor] = None,
                tgt_reference_points: Optional[Tensor] = None,  # nq, bs, 4

                # for memory
                memory: Optional[Tensor] = None,  # hw, bs, d_model
                memory_key_padding_mask: Optional[Tensor] = None,
                memory_level_start_index: Optional[Tensor] = None,  # num_levels
                memory_spatial_shapes: Optional[Tensor] = None,  # bs, num_levels, 2
                memory_pos: Optional[Tensor] = None,  # pos for memory

                # sa
                self_attn_mask: Optional[Tensor] = None,  # mask used for self-attention
                cross_attn_mask: Optional[Tensor] = None,  # mask used for cross-attention
                ):
        """
        Input:
            - tgt/tgt_query_pos: nq, bs, d_model
            -
        """
        # self attention
        if self.self_attn is not None:
            q = k = self.with_pos_embed(tgt, tgt_query_pos)
            tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
            tgt = tgt + self.dropout2(tgt2)
            tgt = self.norm2(tgt)

        # cross attention
        if self.key_aware_type is not None:
            if self.key_aware_type == 'mean':
                tgt = tgt + memory.mean(0, keepdim=True)
            elif self.key_aware_type == 'proj_mean':
                tgt = tgt + self.key_aware_proj(memory).mean(0, keepdim=True)
            else:
                raise NotImplementedError("Unknown key_aware_type: {}".format(self.key_aware_type))
        tgt2 = self.cross_attn(query=tgt.transpose(0, 1), query_pos=tgt_query_pos.transpose(0, 1),
                               reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
                               value=memory.transpose(0, 1), spatial_shapes=memory_spatial_shapes, level_start_index=memory_level_start_index,
                               key_padding_mask=memory_key_padding_mask).transpose(0, 1)
        tgt = tgt2
        tgt = self.norm1(tgt)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt


# def _get_clones(module, N, layer_share=False):
#     # import ipdb; ipdb.set_trace()
#     if layer_share:
#         return nn.ModuleList([module for i in range(N)])
#     else:
#         return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
#
#
# def _get_activation_fn_(activation):
#     """Return an activation function given a string"""
#     if activation == "relu":
#         return F.relu
#     if activation == "gelu":
#         return F.gelu
#     if activation == "glu":
#         return F.glu
#     raise RuntimeError(f"activation should be relu/gelu, not {activation}.")