File size: 9,170 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This is the original implementation of SetCriterion which will be deprecated in the next version.

We keep it here because our modified Criterion module is still under test.
"""

from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F

from detrex.layers import box_cxcywh_to_xyxy, generalized_box_iou
from detrex.utils import get_world_size, is_dist_avail_and_initialized


def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.

    Args:
        inputs (torch.Tensor): A float tensor of arbitrary shape.
            The predictions for each example.
        targets (torch.Tensor): A float tensor with the same shape as inputs. Stores the binary
            classification label for each element in inputs
            (0 for the negative class and 1 for the positive class).
        num_boxes (int): The number of boxes.
        alpha (float, optional): Weighting factor in range (0, 1) to balance
            positive vs negative examples. Default: 0.25.
        gamma (float): Exponent of the modulating factor (1 - p_t) to
            balance easy vs hard examples. Default: 2.

    Returns:
        torch.Tensor: The computed sigmoid focal loss.
    """
    prob = inputs.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_boxes


class GroupSetCriterion(nn.Module):
    """This class computes the loss for Group DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(
        self,
        num_classes,
        matcher,
        weight_dict,
        group_nums: int = 11,
        losses: List[str] = ["class", "boxes"],
        alpha: float = 0.25,
        gamma: float = 2.0,
    ):
        """Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            focal_alpha: alpha in Focal Loss
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.group_nums = group_nums
        self.weight_dict = weight_dict
        self.losses = losses
        self.alpha = alpha
        self.gamma = gamma

    def loss_labels(self, outputs, targets, indices, num_boxes):
        """Classification loss (Binary focal loss)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert "pred_logits" in outputs
        src_logits = outputs["pred_logits"]

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(
            src_logits.shape[:2],
            self.num_classes,
            dtype=torch.int64,
            device=src_logits.device,
        )
        target_classes[idx] = target_classes_o

        # src_logits: (b, num_queries, num_classes) = (2, 300, 80)
        # target_classes_one_hot = (2, 300, 80)
        target_classes_onehot = torch.zeros(
            [src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
            dtype=src_logits.dtype,
            layout=src_logits.layout,
            device=src_logits.device,
        )
        target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
        target_classes_onehot = target_classes_onehot[:, :, :-1]
        loss_class = (
            sigmoid_focal_loss(
                src_logits,
                target_classes_onehot,
                num_boxes=num_boxes,
                alpha=self.alpha,
                gamma=self.gamma,
            )
            * src_logits.shape[1]
        )

        losses = {"loss_class": loss_class}

        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
        targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
        The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        assert "pred_boxes" in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs["pred_boxes"][idx]
        target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")

        losses = {}
        losses["loss_bbox"] = loss_bbox.sum() / num_boxes

        loss_giou = 1 - torch.diag(
            generalized_box_iou(
                box_cxcywh_to_xyxy(src_boxes),
                box_cxcywh_to_xyxy(target_boxes),
            )
        )
        losses["loss_giou"] = loss_giou.sum() / num_boxes

        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            "class": self.loss_labels,
            "boxes": self.loss_boxes,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

    def forward(self, outputs, targets):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc

             return_indices: used for vis. if True, the layer0-5 indices will be returned as well.

        """
        group_nums = self.group_nums if self.training else 1
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets, group_nums=group_nums)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets) * group_nums
        num_boxes = torch.as_tensor(
            [num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device
        )
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = self.matcher(aux_outputs, targets, group_nums=group_nums)
                for loss in self.losses:
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses