Spaces:
Runtime error
Runtime error
File size: 10,962 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/facebookresearch/detr/blob/main/d2/detr/detr.py
# ------------------------------------------------------------------------------------------------
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from detrex.layers.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from detrex.layers.mlp import MLP
from detectron2.modeling import detector_postprocess
from detectron2.structures import Boxes, ImageList, Instances
class DETR(nn.Module):
"""Implement DETR in `End-to-End Object Detection with Transformers
<https://arxiv.org/abs/2005.12872>`_
Args:
backbone (nn.Module): Backbone module for feature extraction.
in_features (List[str]): Selected backbone output features for transformer module.
in_channels (int): Dimension of the last feature in `in_features`.
position_embedding (nn.Module): Position encoding layer for generating position embeddings.
transformer (nn.Module): Transformer module used for further processing features
and input queries.
embed_dim (int): Hidden dimension for transformer module.
num_classes (int): Number of total categories.
num_queries (int): Number of proposal dynamic anchor boxes in Transformer
criterion (nn.Module): Criterion for calculating the total losses.
aux_loss (bool): Whether to calculate auxiliary loss in criterion. Default: True.
pixel_mean (List[float]): Pixel mean value for image normalization.
Default: [123.675, 116.280, 103.530].
pixel_std (List[float]): Pixel std value for image normalization.
Default: [58.395, 57.120, 57.375].
device (str): Training device. Default: "cuda".
"""
def __init__(
self,
backbone: nn.Module,
in_features: List[str],
in_channels: int,
position_embedding: nn.Module,
transformer: nn.Module,
embed_dim: int,
num_classes: int,
num_queries: int,
criterion: nn.Module,
aux_loss: bool = True,
pixel_mean: List[float] = [123.675, 116.280, 103.530],
pixel_std: List[float] = [58.395, 57.120, 57.375],
device: str = "cuda",
):
super().__init__()
# define backbone and position embedding module
self.backbone = backbone
self.in_features = in_features
self.position_embedding = position_embedding
# project the backbone output feature
# into the required dim for transformer block
self.input_proj = nn.Conv2d(in_channels, embed_dim, kernel_size=1)
# define learnable object queries and transformer module
self.transformer = transformer
self.query_embed = nn.Embedding(num_queries, embed_dim)
# define classification head and box head
self.class_embed = nn.Linear(embed_dim, num_classes + 1)
self.bbox_embed = MLP(input_dim=embed_dim, hidden_dim=embed_dim, output_dim=4, num_layers=3)
self.num_classes = num_classes
# where to calculate auxiliary loss in criterion
self.aux_loss = aux_loss
self.criterion = criterion
# normalizer for input raw images
self.device = device
pixel_mean = torch.Tensor(pixel_mean).to(self.device).view(3, 1, 1)
pixel_std = torch.Tensor(pixel_std).to(self.device).view(3, 1, 1)
self.normalizer = lambda x: (x - pixel_mean) / pixel_std
def forward(self, batched_inputs):
"""Forward function of `DAB-DETR` which excepts a list of dict as inputs.
Args:
batched_inputs (List[dict]): A list of instance dict, and each dict must consists of:
- dict["image"] (torch.Tensor): The unnormalized image tensor.
- dict["height"] (int): The original image height.
- dict["width"] (int): The original image width.
- dict["instance"] (detectron2.structures.Instances):
Image meta informations and ground truth boxes and labels during training.
Please refer to
https://detectron2.readthedocs.io/en/latest/modules/structures.html#detectron2.structures.Instances
for the basic usage of Instances.
Returns:
dict: Returns a dict with the following elements:
- dict["pred_logits"]: the classification logits for all queries.
with shape ``[batch_size, num_queries, num_classes]``
- dict["pred_boxes"]: The normalized boxes coordinates for all queries in format
``(x, y, w, h)``. These values are normalized in [0, 1] relative to the size of
each individual image (disregarding possible padding). See PostProcess for information
on how to retrieve the unnormalized bounding box.
- dict["aux_outputs"]: Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
images = self.preprocess_image(batched_inputs)
if self.training:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_ones(batch_size, H, W)
for img_id in range(batch_size):
img_h, img_w = batched_inputs[img_id]["instances"].image_size
img_masks[img_id, :img_h, :img_w] = 0
else:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_zeros(batch_size, H, W)
# only use last level feature in DETR
features = self.backbone(images.tensor)[self.in_features[-1]]
features = self.input_proj(features)
img_masks = F.interpolate(img_masks[None], size=features.shape[-2:]).to(torch.bool)[0]
pos_embed = self.position_embedding(img_masks)
hidden_states, _ = self.transformer(features, img_masks, self.query_embed.weight, pos_embed)
outputs_class = self.class_embed(hidden_states)
outputs_coord = self.bbox_embed(hidden_states).sigmoid()
output = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
if self.aux_loss:
output["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord)
if self.training:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances)
loss_dict = self.criterion(output, targets)
weight_dict = self.criterion.weight_dict
for k in loss_dict.keys():
if k in weight_dict:
loss_dict[k] *= weight_dict[k]
return loss_dict
else:
box_cls = output["pred_logits"]
box_pred = output["pred_boxes"]
results = self.inference(box_cls, box_pred, images.image_sizes)
processed_results = []
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [
{"pred_logits": a, "pred_boxes": b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
def inference(self, box_cls, box_pred, image_sizes):
"""Inference function for DETR
Args:
box_cls (torch.Tensor): tensor of shape ``(batch_size, num_queries, K)``.
The tensor predicts the classification probability for each query.
box_pred (torch.Tensor): tensors of shape ``(batch_size, num_queries, 4)``.
The tensor predicts 4-vector ``(x, y, w, h)`` box
regression values for every queryx
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(box_cls) == len(image_sizes)
results = []
# For each box we assign the best class or the second best if the best on is `no_object`.
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(
zip(scores, labels, box_pred, image_sizes)
):
result = Instances(image_size)
result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image))
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0])
result.scores = scores_per_image
result.pred_classes = labels_per_image
results.append(result)
return results
def prepare_targets(self, targets):
new_targets = []
for targets_per_image in targets:
h, w = targets_per_image.image_size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
gt_classes = targets_per_image.gt_classes
gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
new_targets.append({"labels": gt_classes, "boxes": gt_boxes})
return new_targets
def preprocess_image(self, batched_inputs):
images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs]
images = ImageList.from_tensors(images)
return images
|