File size: 5,027 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/facebookresearch/detr/blob/main/d2/converter.py
# ------------------------------------------------------------------------------------------------

"""
Helper script to convert models trained with the main version of DETR to be used in detrex.
"""
import argparse
import numpy as np
import torch


def parse_args():
    parser = argparse.ArgumentParser("detrex model converter")

    parser.add_argument(
        "--source_model", default="", type=str, help="Path or url to the DETR model to convert"
    )
    parser.add_argument(
        "--output_model", default="", type=str, help="Path where to save the converted model"
    )
    return parser.parse_args()


def main():
    args = parse_args()

    # D2 expects contiguous classes, so we need to remap the 92 classes from DETR
    # fmt: off
    coco_idx = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,  # noqa
                27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51,  # noqa
                52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77,  # noqa
                78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91]
    # fmt: on

    coco_idx = np.array(coco_idx)

    if args.source_model.startswith("https"):
        checkpoint = torch.hub.load_state_dict_from_url(
            args.source_model, map_location="cpu", check_hash=True
        )
    else:
        checkpoint = torch.load(args.source_model, map_location="cpu")
    model_to_convert = checkpoint["model"]

    model_converted = {}
    for k in model_to_convert.keys():
        old_k = k
        if "backbone" in k:
            k = k.replace("backbone.0.body.", "")
            if "layer" not in k:
                k = "stem." + k
            for t in [1, 2, 3, 4]:
                k = k.replace(f"layer{t}", f"res{t + 1}")
            for t in [1, 2, 3]:
                k = k.replace(f"bn{t}", f"conv{t}.norm")
            k = k.replace("downsample.0", "shortcut")
            k = k.replace("downsample.1", "shortcut.norm")
            k = "backbone." + k

        # add new convert content
        if "encoder.layers" in k:
            if "self_attn" in k:
                k = k.replace("self_attn", "attentions.0.attn")
            elif "linear1" in k:
                k = k.replace("linear1", "ffns.0.layers.0.0")
            elif "linear2" in k:
                k = k.replace("linear2", "ffns.0.layers.1")
            elif "norm1" in k:
                k = k.replace("norm1", "norms.0")
            elif "norm2" in k:
                k = k.replace("norm2", "norms.1")

        if "decoder" in k:
            if "decoder.norm" in k:
                k = k.replace("decoder.norm", "decoder.post_norm_layer")
            elif "linear1" in k:
                k = k.replace("linear1", "ffns.0.layers.0.0")
            elif "linear2" in k:
                k = k.replace("linear2", "ffns.0.layers.1")
            elif "norm1" in k:
                k = k.replace("norm1", "norms.0")
            elif "norm2" in k:
                k = k.replace("norm2", "norms.1")
            elif "norm3" in k:
                k = k.replace("norm3", "norms.2")
            elif "self_attn" in k:
                k = k.replace("self_attn", "attentions.0.attn")
            elif "multihead_attn" in k:
                k = k.replace("multihead_attn", "attentions.1.attn")

        # old fashion of detr convert function
        print(old_k, "->", k)
        if "class_embed" in old_k:
            v = model_to_convert[old_k].detach()
            if v.shape[0] == 92:
                shape_old = v.shape
                model_converted[k] = v[coco_idx]
                print(
                    "Head conversion: changing shape from {} to {}".format(
                        shape_old, model_converted[k].shape
                    )
                )
                continue
        model_converted[k] = model_to_convert[old_k].detach()

    model_to_save = {"model": model_converted}
    torch.save(model_to_save, args.output_model)


if __name__ == "__main__":
    main()