Spaces:
Runtime error
Runtime error
File size: 5,027 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/facebookresearch/detr/blob/main/d2/converter.py
# ------------------------------------------------------------------------------------------------
"""
Helper script to convert models trained with the main version of DETR to be used in detrex.
"""
import argparse
import numpy as np
import torch
def parse_args():
parser = argparse.ArgumentParser("detrex model converter")
parser.add_argument(
"--source_model", default="", type=str, help="Path or url to the DETR model to convert"
)
parser.add_argument(
"--output_model", default="", type=str, help="Path where to save the converted model"
)
return parser.parse_args()
def main():
args = parse_args()
# D2 expects contiguous classes, so we need to remap the 92 classes from DETR
# fmt: off
coco_idx = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, # noqa
27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, # noqa
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, # noqa
78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91]
# fmt: on
coco_idx = np.array(coco_idx)
if args.source_model.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(
args.source_model, map_location="cpu", check_hash=True
)
else:
checkpoint = torch.load(args.source_model, map_location="cpu")
model_to_convert = checkpoint["model"]
model_converted = {}
for k in model_to_convert.keys():
old_k = k
if "backbone" in k:
k = k.replace("backbone.0.body.", "")
if "layer" not in k:
k = "stem." + k
for t in [1, 2, 3, 4]:
k = k.replace(f"layer{t}", f"res{t + 1}")
for t in [1, 2, 3]:
k = k.replace(f"bn{t}", f"conv{t}.norm")
k = k.replace("downsample.0", "shortcut")
k = k.replace("downsample.1", "shortcut.norm")
k = "backbone." + k
# add new convert content
if "encoder.layers" in k:
if "self_attn" in k:
k = k.replace("self_attn", "attentions.0.attn")
elif "linear1" in k:
k = k.replace("linear1", "ffns.0.layers.0.0")
elif "linear2" in k:
k = k.replace("linear2", "ffns.0.layers.1")
elif "norm1" in k:
k = k.replace("norm1", "norms.0")
elif "norm2" in k:
k = k.replace("norm2", "norms.1")
if "decoder" in k:
if "decoder.norm" in k:
k = k.replace("decoder.norm", "decoder.post_norm_layer")
elif "linear1" in k:
k = k.replace("linear1", "ffns.0.layers.0.0")
elif "linear2" in k:
k = k.replace("linear2", "ffns.0.layers.1")
elif "norm1" in k:
k = k.replace("norm1", "norms.0")
elif "norm2" in k:
k = k.replace("norm2", "norms.1")
elif "norm3" in k:
k = k.replace("norm3", "norms.2")
elif "self_attn" in k:
k = k.replace("self_attn", "attentions.0.attn")
elif "multihead_attn" in k:
k = k.replace("multihead_attn", "attentions.1.attn")
# old fashion of detr convert function
print(old_k, "->", k)
if "class_embed" in old_k:
v = model_to_convert[old_k].detach()
if v.shape[0] == 92:
shape_old = v.shape
model_converted[k] = v[coco_idx]
print(
"Head conversion: changing shape from {} to {}".format(
shape_old, model_converted[k].shape
)
)
continue
model_converted[k] = model_to_convert[old_k].detach()
model_to_save = {"model": model_converted}
torch.save(model_to_save, args.output_model)
if __name__ == "__main__":
main()
|