Spaces:
Runtime error
Runtime error
File size: 8,804 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Training script using the new "LazyConfig" python config files.
This scripts reads a given python config file and runs the training or evaluation.
It can be used to train any models or dataset as long as they can be
instantiated by the recursive construction defined in the given config file.
Besides lazy construction of models, dataloader, etc., this scripts expects a
few common configuration parameters currently defined in "configs/common/train.py".
To add more complicated training logic, you can easily add other configs
in the config file and implement a new train_net.py to handle them.
"""
import logging
import os
import sys
import time
import torch
from torch.nn.parallel import DataParallel, DistributedDataParallel
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
from detectron2.engine import (
SimpleTrainer,
default_argument_parser,
default_setup,
default_writers,
hooks,
launch,
)
from detectron2.engine.defaults import create_ddp_model
from detectron2.evaluation import inference_on_dataset, print_csv_format
from detectron2.utils import comm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
logger = logging.getLogger("detrex")
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
class Trainer(SimpleTrainer):
"""
We've combine Simple and AMP Trainer together.
"""
def __init__(
self,
model,
dataloader,
optimizer,
amp=False,
clip_grad_params=None,
grad_scaler=None,
):
super().__init__(model=model, data_loader=dataloader, optimizer=optimizer)
unsupported = "AMPTrainer does not support single-process multi-device training!"
if isinstance(model, DistributedDataParallel):
assert not (model.device_ids and len(model.device_ids) > 1), unsupported
assert not isinstance(model, DataParallel), unsupported
if amp:
if grad_scaler is None:
from torch.cuda.amp import GradScaler
grad_scaler = GradScaler()
self.grad_scaler = grad_scaler
# set True to use amp training
self.amp = amp
# gradient clip hyper-params
self.clip_grad_params = clip_grad_params
def run_step(self):
"""
Implement the standard training logic described above.
"""
assert self.model.training, "[Trainer] model was changed to eval mode!"
assert torch.cuda.is_available(), "[Trainer] CUDA is required for AMP training!"
from torch.cuda.amp import autocast
start = time.perf_counter()
"""
If you want to do something with the data, you can wrap the dataloader.
"""
data = next(self._data_loader_iter)
data_time = time.perf_counter() - start
"""
If you want to do something with the losses, you can wrap the model.
"""
loss_dict = self.model(data)
with autocast(enabled=self.amp):
if isinstance(loss_dict, torch.Tensor):
losses = loss_dict
loss_dict = {"total_loss": loss_dict}
else:
losses = sum(loss_dict.values())
"""
If you need to accumulate gradients or do something similar, you can
wrap the optimizer with your custom `zero_grad()` method.
"""
self.optimizer.zero_grad()
if self.amp:
self.grad_scaler.scale(losses).backward()
if self.clip_grad_params is not None:
self.grad_scaler.unscale_(self.optimizer)
self.clip_grads(self.model.parameters())
self.grad_scaler.step(self.optimizer)
self.grad_scaler.update()
else:
losses.backward()
if self.clip_grad_params is not None:
self.clip_grads(self.model.parameters())
self.optimizer.step()
self._write_metrics(loss_dict, data_time)
def clip_grads(self, params):
params = list(filter(lambda p: p.requires_grad and p.grad is not None, params))
if len(params) > 0:
return torch.nn.utils.clip_grad_norm_(
parameters=params,
**self.clip_grad_params,
)
def do_test(cfg, model):
if "evaluator" in cfg.dataloader:
ret = inference_on_dataset(
model, instantiate(cfg.dataloader.test), instantiate(cfg.dataloader.evaluator)
)
print_csv_format(ret)
return ret
def do_train(args, cfg):
"""
Args:
cfg: an object with the following attributes:
model: instantiate to a module
dataloader.{train,test}: instantiate to dataloaders
dataloader.evaluator: instantiate to evaluator for test set
optimizer: instantaite to an optimizer
lr_multiplier: instantiate to a fvcore scheduler
train: other misc config defined in `configs/common/train.py`, including:
output_dir (str)
init_checkpoint (str)
amp.enabled (bool)
max_iter (int)
eval_period, log_period (int)
device (str)
checkpointer (dict)
ddp (dict)
"""
model = instantiate(cfg.model)
logger = logging.getLogger("detectron2")
logger.info("Model:\n{}".format(model))
model.to(cfg.train.device)
# this is an hack of train_net
param_dicts = [
{
"params": [
p
for n, p in model.named_parameters()
if not match_name_keywords(n, ["backbone"])
and not match_name_keywords(n, ["reference_points", "sampling_offsets"])
and p.requires_grad
],
"lr": 2e-4,
},
{
"params": [
p
for n, p in model.named_parameters()
if match_name_keywords(n, ["backbone"]) and p.requires_grad
],
"lr": 2e-5,
},
{
"params": [
p
for n, p in model.named_parameters()
if match_name_keywords(n, ["reference_points", "sampling_offsets"])
and p.requires_grad
],
"lr": 2e-5,
},
]
optim = torch.optim.AdamW(param_dicts, 2e-4, weight_decay=1e-4)
train_loader = instantiate(cfg.dataloader.train)
model = create_ddp_model(model, **cfg.train.ddp)
trainer = Trainer(
model=model,
dataloader=train_loader,
optimizer=optim,
amp=cfg.train.amp.enabled,
clip_grad_params=cfg.train.clip_grad.params if cfg.train.clip_grad.enabled else None,
)
checkpointer = DetectionCheckpointer(
model,
cfg.train.output_dir,
trainer=trainer,
)
trainer.register_hooks(
[
hooks.IterationTimer(),
hooks.LRScheduler(scheduler=instantiate(cfg.lr_multiplier)),
hooks.PeriodicCheckpointer(checkpointer, **cfg.train.checkpointer)
if comm.is_main_process()
else None,
hooks.EvalHook(cfg.train.eval_period, lambda: do_test(cfg, model)),
hooks.PeriodicWriter(
default_writers(cfg.train.output_dir, cfg.train.max_iter),
period=cfg.train.log_period,
)
if comm.is_main_process()
else None,
]
)
checkpointer.resume_or_load(cfg.train.init_checkpoint, resume=args.resume)
if args.resume and checkpointer.has_checkpoint():
# The checkpoint stores the training iteration that just finished, thus we start
# at the next iteration
start_iter = trainer.iter + 1
else:
start_iter = 0
trainer.train(start_iter, cfg.train.max_iter)
def main(args):
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
default_setup(cfg, args)
if args.eval_only:
model = instantiate(cfg.model)
model.to(cfg.train.device)
model = create_ddp_model(model)
DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
print(do_test(cfg, model))
else:
do_train(args, cfg)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
|