File size: 8,804 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Training script using the new "LazyConfig" python config files.

This scripts reads a given python config file and runs the training or evaluation.
It can be used to train any models or dataset as long as they can be
instantiated by the recursive construction defined in the given config file.

Besides lazy construction of models, dataloader, etc., this scripts expects a
few common configuration parameters currently defined in "configs/common/train.py".
To add more complicated training logic, you can easily add other configs
in the config file and implement a new train_net.py to handle them.
"""
import logging
import os
import sys
import time
import torch
from torch.nn.parallel import DataParallel, DistributedDataParallel

from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
from detectron2.engine import (
    SimpleTrainer,
    default_argument_parser,
    default_setup,
    default_writers,
    hooks,
    launch,
)
from detectron2.engine.defaults import create_ddp_model
from detectron2.evaluation import inference_on_dataset, print_csv_format
from detectron2.utils import comm

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))

logger = logging.getLogger("detrex")


def match_name_keywords(n, name_keywords):
    out = False
    for b in name_keywords:
        if b in n:
            out = True
            break
    return out


class Trainer(SimpleTrainer):
    """
    We've combine Simple and AMP Trainer together.
    """

    def __init__(
        self,
        model,
        dataloader,
        optimizer,
        amp=False,
        clip_grad_params=None,
        grad_scaler=None,
    ):
        super().__init__(model=model, data_loader=dataloader, optimizer=optimizer)

        unsupported = "AMPTrainer does not support single-process multi-device training!"
        if isinstance(model, DistributedDataParallel):
            assert not (model.device_ids and len(model.device_ids) > 1), unsupported
        assert not isinstance(model, DataParallel), unsupported

        if amp:
            if grad_scaler is None:
                from torch.cuda.amp import GradScaler

                grad_scaler = GradScaler()
            self.grad_scaler = grad_scaler

        # set True to use amp training
        self.amp = amp

        # gradient clip hyper-params
        self.clip_grad_params = clip_grad_params

    def run_step(self):
        """
        Implement the standard training logic described above.
        """
        assert self.model.training, "[Trainer] model was changed to eval mode!"
        assert torch.cuda.is_available(), "[Trainer] CUDA is required for AMP training!"
        from torch.cuda.amp import autocast

        start = time.perf_counter()
        """
        If you want to do something with the data, you can wrap the dataloader.
        """
        data = next(self._data_loader_iter)
        data_time = time.perf_counter() - start

        """
        If you want to do something with the losses, you can wrap the model.
        """
        loss_dict = self.model(data)
        with autocast(enabled=self.amp):
            if isinstance(loss_dict, torch.Tensor):
                losses = loss_dict
                loss_dict = {"total_loss": loss_dict}
            else:
                losses = sum(loss_dict.values())

        """
        If you need to accumulate gradients or do something similar, you can
        wrap the optimizer with your custom `zero_grad()` method.
        """
        self.optimizer.zero_grad()

        if self.amp:
            self.grad_scaler.scale(losses).backward()
            if self.clip_grad_params is not None:
                self.grad_scaler.unscale_(self.optimizer)
                self.clip_grads(self.model.parameters())
            self.grad_scaler.step(self.optimizer)
            self.grad_scaler.update()
        else:
            losses.backward()
            if self.clip_grad_params is not None:
                self.clip_grads(self.model.parameters())
            self.optimizer.step()

        self._write_metrics(loss_dict, data_time)

    def clip_grads(self, params):
        params = list(filter(lambda p: p.requires_grad and p.grad is not None, params))
        if len(params) > 0:
            return torch.nn.utils.clip_grad_norm_(
                parameters=params,
                **self.clip_grad_params,
            )


def do_test(cfg, model):
    if "evaluator" in cfg.dataloader:
        ret = inference_on_dataset(
            model, instantiate(cfg.dataloader.test), instantiate(cfg.dataloader.evaluator)
        )
        print_csv_format(ret)
        return ret


def do_train(args, cfg):
    """
    Args:
        cfg: an object with the following attributes:
            model: instantiate to a module
            dataloader.{train,test}: instantiate to dataloaders
            dataloader.evaluator: instantiate to evaluator for test set
            optimizer: instantaite to an optimizer
            lr_multiplier: instantiate to a fvcore scheduler
            train: other misc config defined in `configs/common/train.py`, including:
                output_dir (str)
                init_checkpoint (str)
                amp.enabled (bool)
                max_iter (int)
                eval_period, log_period (int)
                device (str)
                checkpointer (dict)
                ddp (dict)
    """
    model = instantiate(cfg.model)
    logger = logging.getLogger("detectron2")
    logger.info("Model:\n{}".format(model))
    model.to(cfg.train.device)

    # this is an hack of train_net
    param_dicts = [
        {
            "params": [
                p
                for n, p in model.named_parameters()
                if not match_name_keywords(n, ["backbone"])
                and not match_name_keywords(n, ["reference_points", "sampling_offsets"])
                and p.requires_grad
            ],
            "lr": 2e-4,
        },
        {
            "params": [
                p
                for n, p in model.named_parameters()
                if match_name_keywords(n, ["backbone"]) and p.requires_grad
            ],
            "lr": 2e-5,
        },
        {
            "params": [
                p
                for n, p in model.named_parameters()
                if match_name_keywords(n, ["reference_points", "sampling_offsets"])
                and p.requires_grad
            ],
            "lr": 2e-5,
        },
    ]
    optim = torch.optim.AdamW(param_dicts, 2e-4, weight_decay=1e-4)

    train_loader = instantiate(cfg.dataloader.train)

    model = create_ddp_model(model, **cfg.train.ddp)

    trainer = Trainer(
        model=model,
        dataloader=train_loader,
        optimizer=optim,
        amp=cfg.train.amp.enabled,
        clip_grad_params=cfg.train.clip_grad.params if cfg.train.clip_grad.enabled else None,
    )

    checkpointer = DetectionCheckpointer(
        model,
        cfg.train.output_dir,
        trainer=trainer,
    )

    trainer.register_hooks(
        [
            hooks.IterationTimer(),
            hooks.LRScheduler(scheduler=instantiate(cfg.lr_multiplier)),
            hooks.PeriodicCheckpointer(checkpointer, **cfg.train.checkpointer)
            if comm.is_main_process()
            else None,
            hooks.EvalHook(cfg.train.eval_period, lambda: do_test(cfg, model)),
            hooks.PeriodicWriter(
                default_writers(cfg.train.output_dir, cfg.train.max_iter),
                period=cfg.train.log_period,
            )
            if comm.is_main_process()
            else None,
        ]
    )

    checkpointer.resume_or_load(cfg.train.init_checkpoint, resume=args.resume)
    if args.resume and checkpointer.has_checkpoint():
        # The checkpoint stores the training iteration that just finished, thus we start
        # at the next iteration
        start_iter = trainer.iter + 1
    else:
        start_iter = 0
    trainer.train(start_iter, cfg.train.max_iter)


def main(args):
    cfg = LazyConfig.load(args.config_file)
    cfg = LazyConfig.apply_overrides(cfg, args.opts)
    default_setup(cfg, args)

    if args.eval_only:
        model = instantiate(cfg.model)
        model.to(cfg.train.device)
        model = create_ddp_model(model)
        DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
        print(do_test(cfg, model))
    else:
        do_train(args, cfg)


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )