Spaces:
Runtime error
Runtime error
File size: 15,774 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from detrex.layers import MLP, box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from detrex.utils import inverse_sigmoid
from detectron2.modeling import detector_postprocess
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.layers.nms import batched_nms
class DeformableDETR(nn.Module):
"""Implements the Deformable DETR model.
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2010.04159>`_ .
Args:
backbone (nn.Module): the backbone module.
position_embedding (nn.Module): the position embedding module.
neck (nn.Module): the neck module.
transformer (nn.Module): the transformer module.
embed_dim (int): the dimension of the embedding.
num_classes (int): Number of total categories.
num_queries (int): Number of proposal dynamic anchor boxes in Transformer
criterion (nn.Module): Criterion for calculating the total losses.
pixel_mean (List[float]): Pixel mean value for image normalization.
Default: [123.675, 116.280, 103.530].
pixel_std (List[float]): Pixel std value for image normalization.
Default: [58.395, 57.120, 57.375].
aux_loss (bool): whether to use auxiliary loss. Default: True.
with_box_refine (bool): whether to use box refinement. Default: False.
as_two_stage (bool): whether to use two-stage. Default: False.
select_box_nums_for_evaluation (int): the number of topk candidates
slected at postprocess for evaluation. Default: 100.
"""
def __init__(
self,
backbone,
position_embedding,
neck,
transformer,
embed_dim,
num_classes,
num_queries,
criterion,
pixel_mean,
pixel_std,
aux_loss=True,
with_box_refine=False,
as_two_stage=False,
select_box_nums_for_evaluation=100,
device="cuda",
):
super().__init__()
# define backbone and position embedding module
self.backbone = backbone
self.position_embedding = position_embedding
# define neck module
self.neck = neck
# define learnable query embedding
self.num_queries = num_queries
if not as_two_stage:
self.query_embedding = nn.Embedding(num_queries, embed_dim * 2)
# define transformer module
self.transformer = transformer
# define classification head and box head
self.num_classes = num_classes
self.class_embed = nn.Linear(embed_dim, num_classes)
self.bbox_embed = MLP(embed_dim, embed_dim, 4, 3)
# where to calculate auxiliary loss in criterion
self.aux_loss = aux_loss
self.criterion = criterion
# define contoller for box refinement and two-stage variants
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
# init parameters for heads
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
for _, neck_layer in self.neck.named_modules():
if isinstance(neck_layer, nn.Conv2d):
nn.init.xavier_uniform_(neck_layer.weight, gain=1)
nn.init.constant_(neck_layer.bias, 0)
# If two-stage, the last class_embed and bbox_embed is for region proposal generation
# Decoder layers share the same heads without box refinement, while use the different
# heads when box refinement is used.
num_pred = (
(transformer.decoder.num_layers + 1) if as_two_stage else transformer.decoder.num_layers
)
if with_box_refine:
self.class_embed = nn.ModuleList(
[copy.deepcopy(self.class_embed) for i in range(num_pred)]
)
self.bbox_embed = nn.ModuleList(
[copy.deepcopy(self.bbox_embed) for i in range(num_pred)]
)
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
self.transformer.decoder.bbox_embed = self.bbox_embed
else:
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
self.transformer.decoder.bbox_embed = None
# hack implementation for two-stage. The last class_embed and bbox_embed is for region proposal generation
if as_two_stage:
self.transformer.decoder.class_embed = self.class_embed
for box_embed in self.bbox_embed:
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
# set topk boxes selected for inference
self.select_box_nums_for_evaluation = select_box_nums_for_evaluation
# normalizer for input raw images
self.device = device
pixel_mean = torch.Tensor(pixel_mean).to(self.device).view(3, 1, 1)
pixel_std = torch.Tensor(pixel_std).to(self.device).view(3, 1, 1)
self.normalizer = lambda x: (x - pixel_mean) / pixel_std
def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
if self.training:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_ones(batch_size, H, W)
for img_id in range(batch_size):
# mask padding regions in batched images
img_h, img_w = batched_inputs[img_id]["instances"].image_size
img_masks[img_id, :img_h, :img_w] = 0
else:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_zeros(batch_size, H, W)
# original features
features = self.backbone(images.tensor) # output feature dict
# project backbone features to the reuired dimension of transformer
# we use multi-scale features in deformable DETR
multi_level_feats = self.neck(features)
multi_level_masks = []
multi_level_position_embeddings = []
for feat in multi_level_feats:
multi_level_masks.append(
F.interpolate(img_masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0)
)
multi_level_position_embeddings.append(self.position_embedding(multi_level_masks[-1]))
# initialize object query embeddings
query_embeds = None
if not self.as_two_stage:
query_embeds = self.query_embedding.weight
(
inter_states,
init_reference,
inter_references,
enc_outputs_class,
enc_outputs_coord_unact,
anchors,
) = self.transformer(
multi_level_feats, multi_level_masks, multi_level_position_embeddings, query_embeds
)
# Calculate output coordinates and classes.
outputs_classes = []
outputs_coords = []
for lvl in range(inter_states.shape[0]):
if lvl == 0:
reference = init_reference
else:
reference = inter_references[lvl - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.class_embed[lvl](inter_states[lvl])
tmp = self.bbox_embed[lvl](inter_states[lvl])
if reference.shape[-1] == 4:
tmp += reference
else:
assert reference.shape[-1] == 2
tmp[..., :2] += reference
outputs_coord = tmp.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_class = torch.stack(outputs_classes)
# tensor shape: [num_decoder_layers, bs, num_query, num_classes]
outputs_coord = torch.stack(outputs_coords)
# tensor shape: [num_decoder_layers, bs, num_query, 4]
# prepare for loss computation
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1],
'init_reference': init_reference}
if self.aux_loss:
output["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord)
if self.as_two_stage:
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
output["enc_outputs"] = {
"pred_logits": enc_outputs_class,
"pred_boxes": enc_outputs_coord,
"anchors": anchors,
}
if self.training:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances)
loss_dict = self.criterion(output, targets)
weight_dict = self.criterion.weight_dict
for k in loss_dict.keys():
if k in weight_dict:
loss_dict[k] *= weight_dict[k]
return loss_dict
else:
box_cls = output["pred_logits"]
box_pred = output["pred_boxes"]
if self.criterion.assign_second_stage:
results = self.nms_inference(box_cls, box_pred, images.image_sizes)
else:
results = self.inference(box_cls, box_pred, images.image_sizes)
processed_results = []
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [
{"pred_logits": a, "pred_boxes": b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
def inference(self, box_cls, box_pred, image_sizes):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_queries, K).
The tensor predicts the classification probability for each query.
box_pred (Tensor): tensors of shape (batch_size, num_queries, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every queryx
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(box_cls) == len(image_sizes)
results = []
# Select top-k confidence boxes for inference
prob = box_cls.sigmoid()
topk_values, topk_indexes = torch.topk(
prob.view(box_cls.shape[0], -1), self.select_box_nums_for_evaluation, dim=1
)
scores = topk_values
topk_boxes = torch.div(topk_indexes, box_cls.shape[2], rounding_mode="floor")
labels = topk_indexes % box_cls.shape[2]
boxes = torch.gather(box_pred, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(
zip(scores, labels, boxes, image_sizes)
):
result = Instances(image_size)
result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image))
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0])
result.scores = scores_per_image
result.pred_classes = labels_per_image
results.append(result)
return results
# DETA using nms for post-process
def nms_inference(self, box_cls, box_pred, image_sizes):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_queries, K).
The tensor predicts the classification probability for each query.
box_pred (Tensor): tensors of shape (batch_size, num_queries, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every queryx
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(box_cls) == len(image_sizes)
results = []
bs, n_queries, n_cls = box_cls.shape
# Select top-k confidence boxes for inference
prob = box_cls.sigmoid()
all_scores = prob.view(bs, n_queries * n_cls).to(box_cls.device)
all_indexes = torch.arange(n_queries * n_cls)[None].repeat(bs, 1).to(box_cls.device)
all_boxes = torch.div(all_indexes, box_cls.shape[2], rounding_mode="floor")
all_labels = all_indexes % box_cls.shape[2]
# convert to xyxy for nms post-process
boxes = box_cxcywh_to_xyxy(box_pred)
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4))
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(
zip(all_scores, all_labels, boxes, image_sizes)
):
pre_topk = scores_per_image.topk(10000).indices
box = box_pred_per_image[pre_topk]
score = scores_per_image[pre_topk]
label = labels_per_image[pre_topk]
# nms post-process
keep_index = batched_nms(box, score, label, 0.7)[:100]
result = Instances(image_size)
result.pred_boxes = Boxes(box[keep_index])
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0])
result.scores = score[keep_index]
result.pred_classes = label[keep_index]
results.append(result)
return results
def prepare_targets(self, targets):
new_targets = []
for targets_per_image in targets:
h, w = targets_per_image.image_size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
gt_classes = targets_per_image.gt_classes
gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
new_targets.append({"labels": gt_classes, "boxes": gt_boxes})
return new_targets
def preprocess_image(self, batched_inputs):
images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs]
images = ImageList.from_tensors(images)
return images
|