Spaces:
Runtime error
Runtime error
File size: 4,229 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
## Conditional DETR for Fast Training Convergence
Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang
[[`arXiv`](https://arxiv.org/abs/2108.06152)] [[`BibTeX`](#citing-conditional-detr)]
<div align="center">
<img src="./assets/attention-maps.png"/>
</div><br/>
## Pretrained Weights
Here we provide the pretrained `Conditional-DETR` weights based on detrex.
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Epochs</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: conditional_detr_r50_50ep -->
<tr><td align="left"><a href="configs/conditional_detr_r50_50ep.py">Conditional-DETR-R50</a></td>
<td align="center">R-50</td>
<td align="center">IN1k</td>
<td align="center">50</td>
<td align="center">41.6</td>
<td align="center"> <a href="https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/conditional_detr_r50_50ep.pth">model</a></td>
</tr>
</tbody></table>
## Converted Weights
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Epochs</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: conditional_detr_r50_50ep -->
<tr><td align="left"><a href="configs/conditional_detr_r50_50ep.py">Conditional-DETR-R50</a></td>
<td align="center">R-50</td>
<td align="center">IN1k</td>
<td align="center">50</td>
<td align="center">41.0</td>
<td align="center"> <a href="https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_conditional_detr_r50_50ep.pth">model</a></td>
</tr>
<tr><td align="left"><a href="configs/conditional_detr_r50_dc5_50ep.py">Conditional-DETR-R50-DC5</a></td>
<td align="center">R-50-DC5</td>
<td align="center">IN1k</td>
<td align="center">50</td>
<td align="center">43.8</td>
<td align="center"> <a href="https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_conditional_detr_r50_dc5.pth">model</a></td>
</tr>
<!-- ROW: conditional_detr_r101_50ep -->
<tr><td align="left"><a href="configs/conditional_detr_r101_50ep.py">Conditional-DETR-R101</a></td>
<td align="center">R-101</td>
<td align="center">IN1k</td>
<td align="center">50</td>
<td align="center">43.0</td>
<td align="center"> <a href="https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_conditional_detr_r101_50ep.pth">model</a></td>
</tr>
<tr><td align="left"><a href="configs/conditional_detr_r101_dc5_50ep.py">Conditional-DETR-R101-DC5</a></td>
<td align="center">R-101-DC5</td>
<td align="center">IN1k</td>
<td align="center">50</td>
<td align="center">45.1</td>
<td align="center"> <a href="https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_conditional_detr_r101_dc5.pth">model</a></td>
</tr>
</tbody></table>
**Note:** Here we borrowed the pretrained weight from [ConditionalDETR](https://github.com/Atten4Vis/ConditionalDETR) official repo. And our detrex training results will be released in the future version.
## Training
All configs can be trained with:
```bash
cd detrex
python tools/train_net.py --config-file projects/conditional_detr/configs/path/to/config.py --num-gpus 8
```
By default, we use 8 GPUs with total batch size as 16 for training.
## Evaluation
Model evaluation can be done as follows:
```bash
cd detrex
python tools/train_net.py --config-file projects/conditional_detr/configs/path/to/config.py --eval-only train.init_checkpoint=/path/to/model_checkpoint
```
## Citing Conditional-DETR
If you find our work helpful for your research, please consider citing the following BibTeX entry.
```BibTex
@inproceedings{meng2021-CondDETR,
title = {Conditional DETR for Fast Training Convergence},
author = {Meng, Depu and Chen, Xiaokang and Fan, Zejia and Zeng, Gang and Li, Houqiang and Yuan, Yuhui and Sun, Lei and Wang, Jingdong},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
year = {2021}
}
```
|