File size: 15,352 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Download Pretrained Backbone Weights

Here we collect the **links** of the backbone models which makes it easier for users to **download pretrained weights** for the **builtin backbones**. And this document will be kept updated. Most included models are borrowed from their original sources. Many thanks for their nicely work in the backbone area.

## ResNet
We've already provided the tutorials of **using torchvision pretrained ResNet models** here: [Download TorchVision ResNet Models](https://detrex.readthedocs.io/en/latest/tutorials/Converters.html#download-pretrained-weights).

## Swin-Transformer
Here we borrowed the download links from the [official implementation](https://github.com/microsoft/Swin-Transformer#main-results-on-imagenet-with-pretrained-models) of Swin-Transformer.

### Swin-Tiny
<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Resolution</th>
<th valign="bottom">Acc@1</th>
<th valign="bottom">Acc@5</th>
<th valign="bottom">22K Model</th>
<th valign="bottom">1K Model</th>
<!-- TABLE BODY -->
 <tr><td align="left"> Swin-Tiny </td>
<td align="center">ImageNet-1K</td>
<td align="center">224x224</td>
<td align="center">81.2</td>
<td align="center">95.5</td>
<td align="center"> - </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth">download</a> </td>
</tr>
 <tr><td align="left"> Swin-Tiny </td>
<td align="center">ImageNet-22K</td>
<td align="center">224x224</td>
<td align="center">80.9</td>
<td align="center">96.0</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22kto1k_finetune.pth"> download </a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using Swin-Tiny Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=224,
    embed_dim=96,
    depths=(2, 2, 6, 2),
    num_heads=(3, 6, 12, 24),
    drop_path_rate=0.1,
    window_size=7,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
# train.init_checkpoint = "/path/to/swin_tiny_patch4_window7_224.pth"
train.init_checkpoint = "/path/to/swin_tiny_patch4_window7_224_22kto1k_finetune.pth"
```

</details>

### Swin-Small
<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Resolution</th>
<th valign="bottom">Acc@1</th>
<th valign="bottom">Acc@5</th>
<th valign="bottom">22K Model</th>
<th valign="bottom">1K Model</th>
<!-- TABLE BODY -->
 <tr><td align="left"> Swin-Small </td>
<td align="center">ImageNet-1K</td>
<td align="center">224x224</td>
<td align="center">83.2</td>
<td align="center">96.2</td>
<td align="center"> - </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth">download</a> </td>
</tr>
 <tr><td align="left"> Swin-Small </td>
<td align="center">ImageNet-22K</td>
<td align="center">224x224</td>
<td align="center">83.2</td>
<td align="center">97.0</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22kto1k_finetune.pth"> download </a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using Swin-Small Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=224,
    embed_dim=96,
    depths=(2, 2, 18, 2),
    num_heads=(3, 6, 12, 24),
    drop_path_rate=0.2,
    window_size=7,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
# train.init_checkpoint = "/path/to/swin_small_patch4_window7_224.pth"
train.init_checkpoint = "/path/to/swin_small_patch4_window7_224_22kto1k_finetune.pth"
```

</details>

### Swin-Base
<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Resolution</th>
<th valign="bottom">Acc@1</th>
<th valign="bottom">Acc@5</th>
<th valign="bottom">22K Model</th>
<th valign="bottom">1K Model</th>
<!-- TABLE BODY -->
 <tr><td align="left"> Swin-Base </td>
<td align="center">ImageNet-1K</td>
<td align="center">224x224</td>
<td align="center">83.5</td>
<td align="center">96.5</td>
<td align="center"> - </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth">download</a> </td>
</tr>
 <tr><td align="left"> Swin-Base </td>
<td align="center">ImageNet-1K</td>
<td align="center">384x384</td>
<td align="center">84.5</td>
<td align="center">97.0</td>
<td align="center"> - </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth">download</a> </td>
</tr>
 <tr><td align="left"> Swin-Base </td>
<td align="center">ImageNet-22K</td>
<td align="center">224x224</td>
<td align="center">85.2</td>
<td align="center">97.5</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth"> download </a> </td>
</tr>
 <tr><td align="left"> Swin-Base </td>
<td align="center">ImageNet-22K</td>
<td align="center">384x384</td>
<td align="center">86.4</td>
<td align="center">98.0</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth"> download </a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using Swin-Base-224 Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=224,
    embed_dim=128,
    depths=(2, 2, 18, 2),
    num_heads=(4, 8, 16, 32),
    window_size=7,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
# train.init_checkpoint = "/path/to/swin_base_patch4_window7_224.pth"
train.init_checkpoint = "/path/to/swin_base_patch4_window7_224_22kto1k.pth"
```

<details open>
<summary> <b> Using Swin-Base-384 Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=384,
    embed_dim=128,
    depths=(2, 2, 18, 2),
    num_heads=(4, 8, 16, 32),
    window_size=12,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
# train.init_checkpoint = "/path/to/swin_base_patch4_window12_384.pth"
train.init_checkpoint = "/path/to/swin_base_patch4_window12_384_22kto1k.pth"
```

</details>

### Swin-Large
<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">Pretrain</th>
<th valign="bottom">Resolution</th>
<th valign="bottom">Acc@1</th>
<th valign="bottom">Acc@5</th>
<th valign="bottom">22K Model</th>
<th valign="bottom">1K Model</th>
<!-- TABLE BODY -->
 <tr><td align="left"> Swin-Large </td>
<td align="center">ImageNet-22K</td>
<td align="center">224x224</td>
<td align="center">86.3</td>
<td align="center">97.9</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth">download</a> </td>
</tr>
 <tr><td align="left"> Swin-Large </td>
<td align="center">ImageNet-22K</td>
<td align="center">384x384</td>
<td align="center">87.3</td>
<td align="center">98.2</td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth">download</a> </td>
<td align="center"> <a href="https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth"> download </a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using Swin-Large-224 Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=224,
    embed_dim=192,
    depths=(2, 2, 18, 2),
    num_heads=(6, 12, 24, 48),
    window_size=7,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
train.init_checkpoint = "/path/to/swin_large_patch4_window7_224_22kto1k.pth"
```

</details>

<details open>
<summary> <b> Using Swin-Large-384 Backbone in Config </b> </summary>

```python
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import SwinTransformer

# modify backbone config
model.backbone = L(SwinTransformer)(
    pretrain_img_size=384,
    embed_dim=192,
    depths=(2, 2, 18, 2),
    num_heads=(6, 12, 24, 48),
    window_size=12,
    out_indices=(1, 2, 3),
)

# setup init checkpoint path
train.init_checkpoint = "/path/to/swin_large_patch4_window12_384_22kto1k.pth"
```
</details>


## ViTDet
Here we borrowed the download links from the [official implementation](https://github.com/facebookresearch/mae#fine-tuning-with-pre-trained-checkpoints) of MAE.

<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom"></th>
<th valign="bottom">ViT-Base</th>
<th valign="bottom">ViT-Large</th>
<th valign="bottom">ViT-Huge</th>
 <tr><td align="left"> Pretrained Checkpoint </td>
<td align="center"> <a href="https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth">download</a> </td>
<td align="center"> <a href="https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth">download</a> </td>
<td align="center"> <a href="https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_huge.pth">download</a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using ViTDet Backbone in Config </b> </summary>

```python
import torch.nn as nn
from detectron2.config import LazyCall as L
from detectron2.layers import ShapeSpec
from detectron2.modeling import ViT, SimpleFeaturePyramid
from detectron2.modeling.backbone.fpn import LastLevelMaxPool

from .dino_r50 import model


# ViT Base Hyper-params
embed_dim, depth, num_heads, dp = 768, 12, 12, 0.1

# Creates Simple Feature Pyramid from ViT backbone
model.backbone = L(SimpleFeaturePyramid)(
    net=L(ViT)(  # Single-scale ViT backbone
        img_size=1024,
        patch_size=16,
        embed_dim=embed_dim,
        depth=depth,
        num_heads=num_heads,
        drop_path_rate=dp,
        window_size=14,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        window_block_indexes=[
            # 2, 5, 8 11 for global attention
            0,
            1,
            3,
            4,
            6,
            7,
            9,
            10,
        ],
        residual_block_indexes=[],
        use_rel_pos=True,
        out_feature="last_feat",
    ),
    in_feature="${.net.out_feature}",
    out_channels=256,
    scale_factors=(2.0, 1.0, 0.5),  # (4.0, 2.0, 1.0, 0.5) in ViTDet
    top_block=L(LastLevelMaxPool)(),
    norm="LN",
    square_pad=1024,
)

# setup init checkpoint path
train.init_checkpoint = "/path/to/mae_pretrain_vit_base.pth"
```
</details>

Please refer to [DINO](https://github.com/IDEA-Research/detrex/tree/main/projects/dino) project for more details about the usage of vit backbone.

## FocalNet
Here we borrowed the download links from the [official implementation](https://github.com/microsoft/FocalNet#imagenet-22k-pretrained) of FocalNet.

<table class="docutils"><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Model</th>
<th valign="bottom">Depth</th>
<th valign="bottom">Dim</th>
<th valign="bottom">Kernels</th>
<th valign="bottom">#Params. (M)</th>
<th valign="bottom">Download</th>
 <tr><td align="left"> FocalNet-L </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">192</td>
<td align="center">[5, 7, 9]</td>
<td align="center"> 207 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth">download</a> </td>
 <tr><td align="left"> FocalNet-L </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">192</td>
<td align="center">[3, 5, 7, 9]</td>
<td align="center"> 207 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth">download</a> </td>
 <tr><td align="left"> FocalNet-XL </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">256</td>
<td align="center">[5, 7, 9]</td>
<td align="center"> 366 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth">download</a> </td>
 <tr><td align="left"> FocalNet-XL </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">256</td>
<td align="center">[3, 5, 7, 9]</td>
<td align="center"> 207 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth">download</a> </td>
 <tr><td align="left"> FocalNet-H </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">352</td>
<td align="center">[5, 7, 9]</td>
<td align="center"> 687 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth">download</a> </td>
 <tr><td align="left"> FocalNet-H </td>
<td align="center">[2, 2, 18, 2]</td>
<td align="center">352</td>
<td align="center">[3, 5, 7, 9]</td>
<td align="center"> 687 </td>
<td align="center"> <a href="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth">download</a> </td>
</tr>
</tbody></table>

<details open>
<summary> <b> Using FocalNet Backbone in Config </b> </summary>

```python
# focalnet-large-4scale baseline
model.backbone = L(FocalNet)(
    embed_dim=192,
    depths=(2, 2, 18, 2),
    focal_levels=(3, 3, 3, 3),
    focal_windows=(5, 5, 5, 5),
    use_conv_embed=True,
    use_postln=True,
    use_postln_in_modulation=False,
    use_layerscale=True,
    normalize_modulator=False,
    out_indices=(1, 2, 3),
)
```
</details>