Spaces:
Runtime error
Runtime error
File size: 7,092 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# # Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------------------------------
# Support TIMM Backbone
# Modified from:
# https://github.com/open-mmlab/mmclassification/blob/master/mmcls/models/backbones/timm_backbone.py
# https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/backbone.py
# ------------------------------------------------------------------------------------------------
import warnings
from typing import Tuple
import torch.nn as nn
from detectron2.modeling.backbone import Backbone
from detectron2.utils import comm
from detectron2.utils.logger import setup_logger
try:
import timm
except ImportError:
timm = None
def log_timm_feature_info(feature_info):
"""Print feature_info of timm backbone to help development and debug.
Args:
feature_info (list[dict] | timm.models.features.FeatureInfo | None):
feature_info of timm backbone.
"""
logger = setup_logger(name="timm backbone")
if feature_info is None:
logger.warning("This backbone does not have feature_info")
elif isinstance(feature_info, list):
for feat_idx, each_info in enumerate(feature_info):
logger.info(f"backbone feature_info[{feat_idx}]: {each_info}")
else:
try:
logger.info(f"backbone out_indices: {feature_info.out_indices}")
logger.info(f"backbone out_channels: {feature_info.channels()}")
logger.info(f"backbone out_strides: {feature_info.reduction()}")
except AttributeError:
logger.warning("Unexpected format of backbone feature_info")
class TimmBackbone(Backbone):
"""A wrapper for using backbone from timm library.
Please see the document for `feature extraction with timm
<https://rwightman.github.io/pytorch-image-models/feature_extraction/>`_
for more details.
Args:
model_name (str): Name of timm model to instantiate.
features_only (bool): Whether to extract feature pyramid (multi-scale
feature maps from the deepest layer of each stage).
pretrained (bool): Whether to load pretrained weights. Default: False.
checkpoint_path (str): Whether to load pretrained weights. Default: False.
in_channels (int): The number of input channels. Default: 3.
out_indices (tuple[str]): The extracted feature indices which select
specific feature levels or limit the stride of the feature extractor.
out_features (tuple[str]): A map for the output feature dict, e.g.,
set ("p0", "p1") to return only the feature from indices (0, 1) as
``{"p0": feature from indice 0, "p1": feature from indice 1}``.
norm_layer (nn.Module): Set the specified norm layer for feature extractor,
e.g., set ``norm_layer=FrozenBatchNorm2d`` to freeze the norm layer
in feature extractor.
"""
def __init__(
self,
model_name: str,
features_only: bool = True,
pretrained: bool = False,
checkpoint_path: str = "",
in_channels: int = 3,
out_indices: Tuple[int] = (0, 1, 2, 3),
norm_layer: nn.Module = None,
):
super().__init__()
logger = setup_logger(name="timm backbone")
if timm is None:
raise RuntimeError('Failed to import timm. Please run "pip install timm". ')
if not isinstance(pretrained, bool):
raise TypeError("pretrained must be bool, not str for model path")
if features_only and checkpoint_path:
warnings.warn(
"Using both features_only and checkpoint_path may cause error"
" in timm. See "
"https://github.com/rwightman/pytorch-image-models/issues/488"
)
try:
self.timm_model = timm.create_model(
model_name=model_name,
features_only=features_only,
pretrained=pretrained,
in_chans=in_channels,
out_indices=out_indices,
checkpoint_path=checkpoint_path,
norm_layer=norm_layer,
)
except Exception as error:
if "feature_info" in str(error):
raise AttributeError(
"Using features_only may cause attribute error"
" in timm, cause there's no feature_info attribute in some models. See "
"https://github.com/rwightman/pytorch-image-models/issues/1438"
)
elif "norm_layer" in str(error):
raise ValueError(
f"{model_name} does not support specified norm layer, please set 'norm_layer=None'"
)
else:
logger.info(error)
exit()
self.out_indices = out_indices
feature_info = getattr(self.timm_model, "feature_info", None)
if comm.get_rank() == 0:
log_timm_feature_info(feature_info)
if feature_info is not None:
output_feature_channels = {
"p{}".format(out_indices[i]): feature_info.channels()[i]
for i in range(len(out_indices))
}
out_feature_strides = {
"p{}".format(out_indices[i]): feature_info.reduction()[i]
for i in range(len(out_indices))
}
self._out_features = {"p{}".format(out_indices[i]) for i in range(len(out_indices))}
self._out_feature_channels = {
feat: output_feature_channels[feat] for feat in self._out_features
}
self._out_feature_strides = {
feat: out_feature_strides[feat] for feat in self._out_features
}
def forward(self, x):
"""Forward function of `TimmBackbone`.
Args:
x (torch.Tensor): the input tensor for feature extraction.
Returns:
dict[str->Tensor]: mapping from feature name (e.g., "p1") to tensor
"""
features = self.timm_model(x)
outs = {}
for i in range(len(self.out_indices)):
out = features[i]
outs["p{}".format(self.out_indices[i])] = out
return outs
|