File size: 19,849 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) 2022 Microsoft
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/FocalNet/FocalNet-DINO/blob/main/models/dino/focal.py
# ------------------------------------------------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

from detectron2.modeling.backbone import Backbone


class Mlp(nn.Module):
    """Multilayer perceptron."""

    def __init__(
        self, 
        in_features, 
        hidden_features=None, 
        out_features=None, 
        act_layer=nn.GELU, 
        drop=0.0
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class FocalModulation(nn.Module):
    """ Focal Modulation
    
    Args:
        dim (int): Number of input channels.
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        focal_level (int): Number of focal levels
        focal_window (int): Focal window size at focal level 1
        focal_factor (int, default=2): Step to increase the focal window
        use_postln (bool, default=False): Whether use post-modulation layernorm
    """

    def __init__(
            self, 
            dim, 
            proj_drop=0., 
            focal_level=2, 
            focal_window=7, 
            focal_factor=2, 
            use_postln=False, 
            use_postln_in_modulation=False, 
            normalize_modulator=False
        ):

        super().__init__()
        self.dim = dim

        # specific args for focalv3
        self.focal_level = focal_level
        self.focal_window = focal_window
        self.focal_factor = focal_factor
        self.use_postln_in_modulation = use_postln_in_modulation
        self.normalize_modulator = normalize_modulator

        self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True)
        self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)

        self.act = nn.GELU()
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.focal_layers = nn.ModuleList()

        if self.use_postln_in_modulation:
            self.ln = nn.LayerNorm(dim)

        for k in range(self.focal_level):
            kernel_size = self.focal_factor*k + self.focal_window
            self.focal_layers.append(
                nn.Sequential(
                    nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, 
                        padding=kernel_size//2, bias=False),
                    nn.GELU(),
                    )
                )

    def forward(self, x):
        """ Forward function.
        Args:
            x: input features with shape of (B, H, W, C)
        """
        B, nH, nW, C = x.shape
        x = self.f(x)
        x = x.permute(0, 3, 1, 2).contiguous()
        q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
        
        ctx_all = 0
        for l in range(self.focal_level):                     
            ctx = self.focal_layers[l](ctx)
            ctx_all = ctx_all + ctx*gates[:, l:l+1]
        ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
        ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:]
        if self.normalize_modulator:
            ctx_all = ctx_all / (self.focal_level+1)

        x_out = q * self.h(ctx_all)
        x_out = x_out.permute(0, 2, 3, 1).contiguous()
        if self.use_postln_in_modulation:
            x_out = self.ln(x_out)            
        x_out = self.proj(x_out)
        x_out = self.proj_drop(x_out)
        return x_out


class FocalModulationBlock(nn.Module):
    """ Focal Modulation Block.
    Args:
        dim (int): Number of input channels.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        focal_level (int): number of focal levels
        focal_window (int): focal kernel size at level 1
    """

    def __init__(
            self, 
            dim, 
            mlp_ratio=4., 
            drop=0., 
            drop_path=0., 
            act_layer=nn.GELU, 
            norm_layer=nn.LayerNorm,
            focal_level=2, 
            focal_window=9, 
            use_postln=False, 
            use_postln_in_modulation=False, 
            normalize_modulator=False, 
            use_layerscale=False, 
            layerscale_value=1e-4
        ):
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.focal_window = focal_window
        self.focal_level = focal_level
        self.use_postln = use_postln
        self.use_layerscale = use_layerscale

        self.norm1 = norm_layer(dim)
        self.modulation = FocalModulation(
            dim, 
            focal_window=self.focal_window, 
            focal_level=self.focal_level, 
            proj_drop=drop, 
            use_postln_in_modulation=use_postln_in_modulation, 
            normalize_modulator=normalize_modulator, 
        )            

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.H = None
        self.W = None

        self.gamma_1 = 1.0
        self.gamma_2 = 1.0
        if self.use_layerscale:
            self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)

    def forward(self, x):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """
        B, L, C = x.shape
        H, W = self.H, self.W
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        if not self.use_postln:
            x = self.norm1(x)
        x = x.view(B, H, W, C)
        
        # FM
        x = self.modulation(x).view(B, H * W, C)
        if self.use_postln:
            x = self.norm1(x)

        # FFN
        x = shortcut + self.drop_path(self.gamma_1 * x)

        if self.use_postln:
            x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
        else:
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))

        return x


class BasicLayer(nn.Module):
    """ A basic focal modulation layer for one stage.
    Args:
        dim (int): Number of feature channels
        depth (int): Depths of this stage.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        focal_level (int): Number of focal levels
        focal_window (int): Focal window size at focal level 1
        use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self,
                 dim,
                 depth,
                 mlp_ratio=4.,
                 drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 focal_window=9, 
                 focal_level=2, 
                 use_conv_embed=False,     
                 use_postln=False,          
                 use_postln_in_modulation=False, 
                 normalize_modulator=False, 
                 use_layerscale=False,                   
                 use_checkpoint=False
        ):
        super().__init__()
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            FocalModulationBlock(
                dim=dim,
                mlp_ratio=mlp_ratio,
                drop=drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                focal_window=focal_window, 
                focal_level=focal_level, 
                use_postln=use_postln, 
                use_postln_in_modulation=use_postln_in_modulation, 
                normalize_modulator=normalize_modulator, 
                use_layerscale=use_layerscale, 
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                patch_size=2, 
                in_chans=dim, embed_dim=2*dim, 
                use_conv_embed=use_conv_embed, 
                norm_layer=norm_layer, 
                is_stem=False
            )

        else:
            self.downsample = None

    def forward(self, x, H, W):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """

        for blk in self.blocks:
            blk.H, blk.W = H, W
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
            x_down = self.downsample(x_reshaped)      
            x_down = x_down.flatten(2).transpose(1, 2)            
            Wh, Ww = (H + 1) // 2, (W + 1) // 2
            return x, H, W, x_down, Wh, Ww
        else:
            return x, H, W, x, H, W


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
        use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False
        is_stem (bool): Is the stem block or not. 
    """

    def __init__(
            self, 
            patch_size=4, 
            in_chans=3, 
            embed_dim=96, 
            norm_layer=None, 
            use_conv_embed=False, 
            is_stem=False
        ):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if use_conv_embed:
            # if we choose to use conv embedding, then we treat the stem and non-stem differently
            if is_stem:
                kernel_size = 7; padding = 2; stride = 4
            else:
                kernel_size = 3; padding = 1; stride = 2
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)                    
        else:
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        _, _, H, W = x.size()
        if W % self.patch_size[1] != 0:
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
        if H % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))

        x = self.proj(x)  # B C Wh Ww
        if self.norm is not None:
            Wh, Ww = x.size(2), x.size(3)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)

        return x


class FocalNet(Backbone):
    """Implement paper `Focal Modulation Networks <https://arxiv.org/pdf/2203.11926.pdf>`_
    
    Args:
        pretrain_img_size (int): Input image size for training the pretrained model,
            used in absolute postion embedding. Default 224.
        patch_size (int | tuple(int)): Patch size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        depths (tuple[int]): Depths of each Swin Transformer stage.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        drop_rate (float): Dropout rate.
        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
        out_indices (Sequence[int]): Output from which stages.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
        focal_levels (Sequence[int]): Number of focal levels at four stages
        focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages
        use_conv_embed (bool): Whether use overlapped convolution for patch embedding
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(
        self,
        pretrain_img_size=1600,
        patch_size=4,
        in_chans=3,
        embed_dim=96,
        depths=[2, 2, 6, 2],
        mlp_ratio=4.,
        drop_rate=0.,
        drop_path_rate=0.3, # 0.3 or 0.4 works better for large+ models
        norm_layer=nn.LayerNorm,
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,
        focal_levels=[3, 3, 3, 3], 
        focal_windows=[3, 3, 3, 3],
        use_conv_embed=False, 
        use_postln=False, 
        use_postln_in_modulation=False, 
        use_layerscale=False, 
        normalize_modulator=False, 
        use_checkpoint=False,  
    ):
        super().__init__()

        self.pretrain_img_size = pretrain_img_size
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None, 
            use_conv_embed=use_conv_embed, is_stem=True)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2 ** i_layer),
                depth=depths[i_layer],
                mlp_ratio=mlp_ratio,
                drop=drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
                focal_window=focal_windows[i_layer], 
                focal_level=focal_levels[i_layer], 
                use_conv_embed=use_conv_embed,
                use_postln=use_postln, 
                use_postln_in_modulation=use_postln_in_modulation, 
                normalize_modulator=normalize_modulator, 
                use_layerscale=use_layerscale, 
                use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
        self.num_features = num_features

        # add a norm layer for each output
        for i_layer in out_indices:
            layer = norm_layer(num_features[i_layer])
            layer_name = f"norm{i_layer}"
            self.add_module(layer_name, layer)

        self._freeze_stages()

        # add basic info
        self._out_features = ["p{}".format(i) for i in self.out_indices]
        self._out_feature_channels = {
            "p{}".format(i): self.embed_dim * 2**i for i in self.out_indices
        }
        self._out_feature_strides = {"p{}".format(i): 2 ** (i + 2) for i in self.out_indices}
        self._size_devisibility = 32

        self.apply(self._init_weights)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        if self.frozen_stages >= 2:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages - 1):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        """Forward function of `FocalNet`

        Args:
            x (torch.Tensor): the input tensor for feature extraction.

        Returns:
            dict[str->Tensor]: mapping from feature name (e.g., "p1") to tensor
        """
        x = self.patch_embed(x)
        Wh, Ww = x.size(2), x.size(3)

        x = x.flatten(2).transpose(1, 2)
        x = self.pos_drop(x)

        outs = {}
        for i in range(self.num_layers):
            layer = self.layers[i]
            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
            if i in self.out_indices:
                norm_layer = getattr(self, f"norm{i}")
                x_out = norm_layer(x_out)
                out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
                outs["p{}".format(i)] = out

        return outs