Spaces:
Runtime error
Runtime error
File size: 9,429 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/bricks/transformer.py
# ------------------------------------------------------------------------------------------------
import copy
import warnings
from typing import List
import torch
import torch.nn as nn
class BaseTransformerLayer(nn.Module):
# TODO: add more tutorials about BaseTransformerLayer
"""The implementation of Base `TransformerLayer` used in Transformer. Modified
from `mmcv <https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/bricks/transformer.py>`_.
It can be built by directly passing the `Attentions`, `FFNs`, `Norms`
module, which support more flexible cusomization combined with
`LazyConfig` system. The `BaseTransformerLayer` also supports `prenorm`
when you specifying the `norm` as the first element of `operation_order`.
More details about the `prenorm`: `On Layer Normalization in the
Transformer Architecture <https://arxiv.org/abs/2002.04745>`_ .
Args:
attn (list[nn.Module] | nn.Module): nn.Module or a list
contains the attention module used in TransformerLayer.
ffn (nn.Module): FFN module used in TransformerLayer.
norm (nn.Module): Normalization layer used in TransformerLayer.
operation_order (tuple[str]): The execution order of operation in
transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
Support `prenorm` when you specifying the first element as `norm`.
Default = None.
"""
def __init__(
self,
attn: List[nn.Module],
ffn: nn.Module,
norm: nn.Module,
operation_order: tuple = None,
):
super(BaseTransformerLayer, self).__init__()
assert set(operation_order).issubset({"self_attn", "norm", "cross_attn", "ffn"})
# count attention nums
num_attn = operation_order.count("self_attn") + operation_order.count("cross_attn")
if isinstance(attn, nn.Module):
attn = [copy.deepcopy(attn) for _ in range(num_attn)]
else:
assert len(attn) == num_attn, (
f"The length of attn (nn.Module or List[nn.Module]) {num_attn}"
f"is not consistent with the number of attention in "
f"operation_order {operation_order}"
)
self.num_attn = num_attn
self.operation_order = operation_order
self.pre_norm = operation_order[0] == "norm"
self.attentions = nn.ModuleList()
index = 0
for operation_name in operation_order:
if operation_name in ["self_attn", "cross_attn"]:
self.attentions.append(attn[index])
index += 1
self.embed_dim = self.attentions[0].embed_dim
# count ffn nums
self.ffns = nn.ModuleList()
num_ffns = operation_order.count("ffn")
for _ in range(num_ffns):
self.ffns.append(copy.deepcopy(ffn))
# count norm nums
self.norms = nn.ModuleList()
num_norms = operation_order.count("norm")
for _ in range(num_norms):
self.norms.append(copy.deepcopy(norm))
def forward(
self,
query: torch.Tensor,
key: torch.Tensor = None,
value: torch.Tensor = None,
query_pos: torch.Tensor = None,
key_pos: torch.Tensor = None,
attn_masks: List[torch.Tensor] = None,
query_key_padding_mask: torch.Tensor = None,
key_padding_mask: torch.Tensor = None,
**kwargs,
):
"""Forward function for `BaseTransformerLayer`.
**kwargs contains the specific arguments of attentions.
Args:
query (torch.Tensor): Query embeddings with shape
`(num_query, bs, embed_dim)` or `(bs, num_query, embed_dim)`
which should be specified follows the attention module used in
`BaseTransformerLayer`.
key (torch.Tensor): Key embeddings used in `Attention`.
value (torch.Tensor): Value embeddings with the same shape as `key`.
query_pos (torch.Tensor): The position embedding for `query`.
Default: None.
key_pos (torch.Tensor): The position embedding for `key`.
Default: None.
attn_masks (List[Tensor] | None): A list of 2D ByteTensor used
in calculation the corresponding attention. The length of
`attn_masks` should be equal to the number of `attention` in
`operation_order`. Default: None.
query_key_padding_mask (torch.Tensor): ByteTensor for `query`, with
shape `(bs, num_query)`. Only used in `self_attn` layer.
Defaults to None.
key_padding_mask (torch.Tensor): ByteTensor for `key`, with
shape `(bs, num_key)`. Default: None.
"""
norm_index = 0
attn_index = 0
ffn_index = 0
identity = query
if attn_masks is None:
attn_masks = [None for _ in range(self.num_attn)]
elif isinstance(attn_masks, torch.Tensor):
attn_masks = [copy.deepcopy(attn_masks) for _ in range(self.num_attn)]
warnings.warn(f"Use same attn_mask in all attentions in " f"{self.__class__.__name__} ")
else:
assert len(attn_masks) == self.num_attn, (
f"The length of "
f"attn_masks {len(attn_masks)} must be equal "
f"to the number of attention in "
f"operation_order {self.num_attn}"
)
for layer in self.operation_order:
if layer == "self_attn":
temp_key = temp_value = query
query = self.attentions[attn_index](
query,
temp_key,
temp_value,
identity if self.pre_norm else None,
query_pos=query_pos,
key_pos=query_pos,
attn_mask=attn_masks[attn_index],
key_padding_mask=query_key_padding_mask,
**kwargs,
)
attn_index += 1
identity = query
elif layer == "norm":
query = self.norms[norm_index](query)
norm_index += 1
elif layer == "cross_attn":
query = self.attentions[attn_index](
query,
key,
value,
identity if self.pre_norm else None,
query_pos=query_pos,
key_pos=key_pos,
attn_mask=attn_masks[attn_index],
key_padding_mask=key_padding_mask,
**kwargs,
)
attn_index += 1
identity = query
elif layer == "ffn":
query = self.ffns[ffn_index](query, identity if self.pre_norm else None)
ffn_index += 1
return query
class TransformerLayerSequence(nn.Module):
"""Base class for TransformerEncoder and TransformerDecoder, which will copy
the passed `transformer_layers` module `num_layers` time or save the passed
list of `transformer_layers` as parameters named ``self.layers``
which is the type of ``nn.ModuleList``.
The users should inherit `TransformerLayerSequence` and implemente their
own forward function.
Args:
transformer_layers (list[BaseTransformerLayer] | BaseTransformerLayer): A list
of BaseTransformerLayer. If it is obj:`BaseTransformerLayer`, it
would be repeated `num_layers` times to a list[BaseTransformerLayer]
num_layers (int): The number of `TransformerLayer`. Default: None.
"""
def __init__(
self,
transformer_layers=None,
num_layers=None,
):
super(TransformerLayerSequence, self).__init__()
self.num_layers = num_layers
self.layers = nn.ModuleList()
if isinstance(transformer_layers, nn.Module):
for _ in range(num_layers):
self.layers.append(copy.deepcopy(transformer_layers))
else:
assert isinstance(transformer_layers, list) and len(transformer_layers) == num_layers
def forward(self):
"""Forward function of `TransformerLayerSequence`. The users should inherit
`TransformerLayerSequence` and implemente their own forward function.
"""
raise NotImplementedError()
|