File size: 8,291 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Various positional encodings for the transformer.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/facebookresearch/detr/blob/main/models/position_encoding.py
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/utils/positional_encoding.py
# ------------------------------------------------------------------------------------------------

import math
import torch
import torch.nn as nn


class PositionEmbeddingSine(nn.Module):
    """Sinusoidal position embedding used in DETR model.

    Please see `End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for more details.

    Args:
        num_pos_feats (int): The feature dimension for each position along
            x-axis or y-axis. The final returned dimension for each position
            is 2 times of the input value.
        temperature (int, optional): The temperature used for scaling
            the position embedding. Default: 10000.
        scale (float, optional): A scale factor that scales the position
            embedding. The scale will be used only when `normalize` is True.
            Default: 2*pi.
        eps (float, optional): A value added to the denominator for numerical
            stability. Default: 1e-6.
        offset (float): An offset added to embed when doing normalization.
        normalize (bool, optional): Whether to normalize the position embedding.
            Default: False.
    """

    def __init__(
        self,
        num_pos_feats: int = 64,
        temperature: int = 10000,
        scale: float = 2 * math.pi,
        eps: float = 1e-6,
        offset: float = 0.0,
        normalize: bool = False,
    ):
        super().__init__()
        if normalize:
            assert isinstance(scale, (float, int)), (
                "when normalize is set,"
                "scale should be provided and in float or int type, "
                f"found {type(scale)}"
            )
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        self.scale = scale
        self.eps = eps
        self.offset = offset

    def forward(self, mask: torch.Tensor, **kwargs) -> torch.Tensor:
        """Forward function for `PositionEmbeddingSine`.

        Args:
            mask (torch.Tensor): ByteTensor mask. Non-zero values representing
                ignored positions, while zero values means valid positions
                for the input tensor. Shape as `(bs, h, w)`.

        Returns:
            torch.Tensor: Returned position embedding with
            shape `(bs, num_pos_feats * 2, h, w)`
        """
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            y_embed = (y_embed + self.offset) / (y_embed[:, -1:, :] + self.eps) * self.scale
            x_embed = (x_embed + self.offset) / (x_embed[:, :, -1:] + self.eps) * self.scale
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=mask.device)
        dim_t = self.temperature ** (
            2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats
        )
        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t

        # use view as mmdet instead of flatten for dynamically exporting to ONNX
        B, H, W = mask.size()
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).view(
            B, H, W, -1
        )
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).view(
            B, H, W, -1
        )
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


class PositionEmbeddingLearned(nn.Module):
    """
    Position embedding with learnable embedding weights.

    Args:
        num_pos_feats (int): The feature dimension for each position along
            x-axis or y-axis. The final returned dimension for each position
            is 2 times of the input value.
        row_num_embed (int, optional): The dictionary size of row embeddings.
            Default: 50.
        col_num_embed (int, optional): The dictionary size of column embeddings.
            Default: 50.
    """

    def __init__(
        self,
        num_pos_feats: int = 256,
        row_num_embed: int = 50,
        col_num_embed: int = 50,
    ):
        super().__init__()
        self.row_embed = nn.Embedding(row_num_embed, num_pos_feats)
        self.col_embed = nn.Embedding(col_num_embed, num_pos_feats)
        self.num_pos_feats = num_pos_feats
        self.row_num_embed = row_num_embed
        self.col_num_embed = col_num_embed

        self.reset_parameters()

    def reset_parameters(self):
        nn.init.uniform_(self.row_embed.weight)
        nn.init.uniform_(self.col_embed.weight)

    def forward(self, mask):
        """Forward function for `PositionEmbeddingLearned`.

        Args:
            mask (torch.Tensor): ByteTensor mask. Non-zero values representing
                ignored positions, while zero values means valid positions
                for the input tensor. Shape as `(bs, h, w)`.

        Returns:
            torch.Tensor: Returned position embedding with
            shape `(bs, num_pos_feats * 2, h, w)`
        """
        h, w = mask.shape[-2:]
        x = torch.arange(w, device=mask.device)
        y = torch.arange(h, device=mask.device)
        x_emb = self.col_embed(x)
        y_emb = self.row_embed(y)
        pos = (
            torch.cat(
                [
                    x_emb.unsqueeze(0).repeat(h, 1, 1),
                    y_emb.unsqueeze(1).repeat(1, w, 1),
                ],
                dim=-1,
            )
            .permute(2, 0, 1)
            .unsqueeze(0)
            .repeat(mask.shape[0], 1, 1, 1)
        )
        return pos


def get_sine_pos_embed(
    pos_tensor: torch.Tensor,
    num_pos_feats: int = 128,
    temperature: int = 10000,
    exchange_xy: bool = True,
) -> torch.Tensor:
    """generate sine position embedding from a position tensor

    Args:
        pos_tensor (torch.Tensor): Shape as `(None, n)`.
        num_pos_feats (int): projected shape for each float in the tensor. Default: 128
        temperature (int): The temperature used for scaling
            the position embedding. Default: 10000.
        exchange_xy (bool, optional): exchange pos x and pos y. \
            For example, input tensor is `[x, y]`, the results will  # noqa 
            be `[pos(y), pos(x)]`. Defaults: True.

    Returns:
        torch.Tensor: Returned position embedding  # noqa 
        with shape `(None, n * num_pos_feats)`.
    """
    scale = 2 * math.pi
    dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
    dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)

    def sine_func(x: torch.Tensor):
        sin_x = x * scale / dim_t
        sin_x = torch.stack((sin_x[:, :, 0::2].sin(), sin_x[:, :, 1::2].cos()), dim=3).flatten(2)
        return sin_x

    pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
    if exchange_xy:
        pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
    pos_res = torch.cat(pos_res, dim=2)
    return pos_res