File size: 20,095 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import warnings
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.init import xavier_uniform_, constant_


class DCNv3Function(Function):
    @staticmethod
    @custom_fwd
    def forward(
            ctx, input, offset, mask,
            kernel_h, kernel_w, stride_h, stride_w,
            pad_h, pad_w, dilation_h, dilation_w,
            group, group_channels, offset_scale, im2col_step):
        ctx.kernel_h = kernel_h
        ctx.kernel_w = kernel_w
        ctx.stride_h = stride_h
        ctx.stride_w = stride_w
        ctx.pad_h = pad_h
        ctx.pad_w = pad_w
        ctx.dilation_h = dilation_h
        ctx.dilation_w = dilation_w
        ctx.group = group
        ctx.group_channels = group_channels
        ctx.offset_scale = offset_scale
        ctx.im2col_step = im2col_step
        output = _C.dcnv3_forward(
            input, offset, mask, kernel_h,
            kernel_w, stride_h, stride_w, pad_h,
            pad_w, dilation_h, dilation_w, group,
            group_channels, offset_scale, ctx.im2col_step)
        ctx.save_for_backward(input, offset, mask)

        return output

    @staticmethod
    @once_differentiable
    @custom_bwd
    def backward(ctx, grad_output):
        input, offset, mask = ctx.saved_tensors
        grad_input, grad_offset, grad_mask = \
            _C.dcnv3_backward(
                input, offset, mask, ctx.kernel_h,
                ctx.kernel_w, ctx.stride_h, ctx.stride_w, ctx.pad_h,
                ctx.pad_w, ctx.dilation_h, ctx.dilation_w, ctx.group,
                ctx.group_channels, ctx.offset_scale, grad_output.contiguous(), ctx.im2col_step)

        return grad_input, grad_offset, grad_mask, \
            None, None, None, None, None, None, None, None, None, None, None, None


def _get_reference_points(spatial_shapes, device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h=0, pad_w=0, stride_h=1, stride_w=1):
    _, H_, W_, _ = spatial_shapes
    H_out = (H_ - (dilation_h * (kernel_h - 1) + 1)) // stride_h + 1
    W_out = (W_ - (dilation_w * (kernel_w - 1) + 1)) // stride_w + 1

    ref_y, ref_x = torch.meshgrid(
        torch.linspace(
            # pad_h + 0.5,
            # H_ - pad_h - 0.5,
            (dilation_h * (kernel_h - 1)) // 2 + 0.5,
            (dilation_h * (kernel_h - 1)) // 2 + 0.5 + (H_out - 1) * stride_h,
            H_out,
            dtype=torch.float32,
            device=device),
        torch.linspace(
            # pad_w + 0.5,
            # W_ - pad_w - 0.5,
            (dilation_w * (kernel_w - 1)) // 2 + 0.5,
            (dilation_w * (kernel_w - 1)) // 2 + 0.5 + (W_out - 1) * stride_w,
            W_out,
            dtype=torch.float32,
            device=device))
    ref_y = ref_y.reshape(-1)[None] / H_
    ref_x = ref_x.reshape(-1)[None] / W_

    ref = torch.stack((ref_x, ref_y), -1).reshape(
        1, H_out, W_out, 1, 2)

    return ref


def _generate_dilation_grids(spatial_shapes, kernel_h, kernel_w, dilation_h, dilation_w, group, device):
    _, H_, W_, _ = spatial_shapes
    points_list = []
    x, y = torch.meshgrid(
        torch.linspace(
            -((dilation_w * (kernel_w - 1)) // 2),
            -((dilation_w * (kernel_w - 1)) // 2) +
            (kernel_w - 1) * dilation_w, kernel_w,
            dtype=torch.float32,
            device=device),
        torch.linspace(
            -((dilation_h * (kernel_h - 1)) // 2),
            -((dilation_h * (kernel_h - 1)) // 2) +
            (kernel_h - 1) * dilation_h, kernel_h,
            dtype=torch.float32,
            device=device))

    points_list.extend([x / W_, y / H_])
    grid = torch.stack(points_list, -1).reshape(-1, 1, 2).\
        repeat(1, group, 1).permute(1, 0, 2)
    grid = grid.reshape(1, 1, 1, group * kernel_h * kernel_w, 2)

    return grid


def dcnv3_core_pytorch(
        input, offset, mask, kernel_h,
        kernel_w, stride_h, stride_w, pad_h,
        pad_w, dilation_h, dilation_w, group,
        group_channels, offset_scale):
    # for debug and test only,
    # need to use cuda version instead
    input = F.pad(
        input,
        [0, 0, pad_h, pad_h, pad_w, pad_w])
    N_, H_in, W_in, _ = input.shape
    _, H_out, W_out, _ = offset.shape

    ref = _get_reference_points(
        input.shape, input.device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h, pad_w, stride_h, stride_w)
    grid = _generate_dilation_grids(
        input.shape, kernel_h, kernel_w, dilation_h, dilation_w, group, input.device)
    spatial_norm = torch.tensor([W_in, H_in]).reshape(1, 1, 1, 2).\
        repeat(1, 1, 1, group*kernel_h*kernel_w).to(input.device)

    sampling_locations = (ref + grid * offset_scale).repeat(N_, 1, 1, 1, 1).flatten(3, 4) + \
        offset * offset_scale / spatial_norm

    P_ = kernel_h * kernel_w
    sampling_grids = 2 * sampling_locations - 1
    # N_, H_in, W_in, group*group_channels -> N_, H_in*W_in, group*group_channels -> N_, group*group_channels, H_in*W_in -> N_*group, group_channels, H_in, W_in
    input_ = input.view(N_, H_in*W_in, group*group_channels).transpose(1, 2).\
        reshape(N_*group, group_channels, H_in, W_in)
    # N_, H_out, W_out, group*P_*2 -> N_, H_out*W_out, group, P_, 2 -> N_, group, H_out*W_out, P_, 2 -> N_*group, H_out*W_out, P_, 2
    sampling_grid_ = sampling_grids.view(N_, H_out*W_out, group, P_, 2).transpose(1, 2).\
        flatten(0, 1)
    # N_*group, group_channels, H_out*W_out, P_
    sampling_input_ = F.grid_sample(
        input_, sampling_grid_, mode='bilinear', padding_mode='zeros', align_corners=False)

    # (N_, H_out, W_out, group*P_) -> N_, H_out*W_out, group, P_ -> (N_, group, H_out*W_out, P_) -> (N_*group, 1, H_out*W_out, P_)
    mask = mask.view(N_, H_out*W_out, group, P_).transpose(1, 2).\
        reshape(N_*group, 1, H_out*W_out, P_)
    output = (sampling_input_ * mask).sum(-1).view(N_,
                                                   group*group_channels, H_out*W_out)

    return output.transpose(1, 2).reshape(N_, H_out, W_out, -1).contiguous()



import warnings
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, constant_


class to_channels_first(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x.permute(0, 3, 1, 2)


class to_channels_last(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x.permute(0, 2, 3, 1)


def build_norm_layer(dim,
                     norm_layer,
                     in_format='channels_last',
                     out_format='channels_last',
                     eps=1e-6):
    layers = []
    if norm_layer == 'BN':
        if in_format == 'channels_last':
            layers.append(to_channels_first())
        layers.append(nn.BatchNorm2d(dim))
        if out_format == 'channels_last':
            layers.append(to_channels_last())
    elif norm_layer == 'LN':
        if in_format == 'channels_first':
            layers.append(to_channels_last())
        layers.append(nn.LayerNorm(dim, eps=eps))
        if out_format == 'channels_first':
            layers.append(to_channels_first())
    else:
        raise NotImplementedError(
            f'build_norm_layer does not support {norm_layer}')
    return nn.Sequential(*layers)


def build_act_layer(act_layer):
    if act_layer == 'ReLU':
        return nn.ReLU(inplace=True)
    elif act_layer == 'SiLU':
        return nn.SiLU(inplace=True)
    elif act_layer == 'GELU':
        return nn.GELU()

    raise NotImplementedError(f'build_act_layer does not support {act_layer}')


def _is_power_of_2(n):
    if (not isinstance(n, int)) or (n < 0):
        raise ValueError(
            "invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))

    return (n & (n - 1) == 0) and n != 0


class CenterFeatureScaleModule(nn.Module):
    def forward(self,
                query,
                center_feature_scale_proj_weight,
                center_feature_scale_proj_bias):
        center_feature_scale = F.linear(query,
                                        weight=center_feature_scale_proj_weight,
                                        bias=center_feature_scale_proj_bias).sigmoid()
        return center_feature_scale


class DCNv3_pytorch(nn.Module):
    def __init__(
            self,
            channels=64,
            kernel_size=3,
            dw_kernel_size=None,
            stride=1,
            pad=1,
            dilation=1,
            group=4,
            offset_scale=1.0,
            act_layer='GELU',
            norm_layer='LN',
            center_feature_scale=False):
        """
        DCNv3 Module
        :param channels
        :param kernel_size
        :param stride
        :param pad
        :param dilation
        :param group
        :param offset_scale
        :param act_layer
        :param norm_layer
        """
        super().__init__()
        if channels % group != 0:
            raise ValueError(
                f'channels must be divisible by group, but got {channels} and {group}')
        _d_per_group = channels // group
        dw_kernel_size = dw_kernel_size if dw_kernel_size is not None else kernel_size
        # you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
        if not _is_power_of_2(_d_per_group):
            warnings.warn(
                "You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
                "which is more efficient in our CUDA implementation.")

        self.offset_scale = offset_scale
        self.channels = channels
        self.kernel_size = kernel_size
        self.dw_kernel_size = dw_kernel_size
        self.stride = stride
        self.dilation = dilation
        self.pad = pad
        self.group = group
        self.group_channels = channels // group
        self.offset_scale = offset_scale
        self.center_feature_scale = center_feature_scale

        self.dw_conv = nn.Sequential(
            nn.Conv2d(
                channels,
                channels,
                kernel_size=dw_kernel_size,
                stride=1,
                padding=(dw_kernel_size - 1) // 2,
                groups=channels),
            build_norm_layer(
                channels,
                norm_layer,
                'channels_first',
                'channels_last'),
            build_act_layer(act_layer))
        self.offset = nn.Linear(
            channels,
            group * kernel_size * kernel_size * 2)
        self.mask = nn.Linear(
            channels,
            group * kernel_size * kernel_size)
        self.input_proj = nn.Linear(channels, channels)
        self.output_proj = nn.Linear(channels, channels)
        self._reset_parameters()
        
        if center_feature_scale:
            self.center_feature_scale_proj_weight = nn.Parameter(
                torch.zeros((group, channels), dtype=torch.float))
            self.center_feature_scale_proj_bias = nn.Parameter(
                torch.tensor(0.0, dtype=torch.float).view((1,)).repeat(group, ))
            self.center_feature_scale_module = CenterFeatureScaleModule()

    def _reset_parameters(self):
        constant_(self.offset.weight.data, 0.)
        constant_(self.offset.bias.data, 0.)
        constant_(self.mask.weight.data, 0.)
        constant_(self.mask.bias.data, 0.)
        xavier_uniform_(self.input_proj.weight.data)
        constant_(self.input_proj.bias.data, 0.)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.)

    def forward(self, input):
        """
        :param query                       (N, H, W, C)
        :return output                     (N, H, W, C)
        """
        N, H, W, _ = input.shape

        x = self.input_proj(input)
        x_proj = x

        x1 = input.permute(0, 3, 1, 2)
        x1 = self.dw_conv(x1)
        offset = self.offset(x1)
        mask = self.mask(x1).reshape(N, H, W, self.group, -1)
        mask = F.softmax(mask, -1).reshape(N, H, W, -1)

        x = dcnv3_core_pytorch(
            x, offset, mask,
            self.kernel_size, self.kernel_size,
            self.stride, self.stride,
            self.pad, self.pad,
            self.dilation, self.dilation,
            self.group, self.group_channels,
            self.offset_scale)
        if self.center_feature_scale:
            center_feature_scale = self.center_feature_scale_module(
                x1, self.center_feature_scale_proj_weight, self.center_feature_scale_proj_bias)
            # N, H, W, groups -> N, H, W, groups, 1 -> N, H, W, groups, _d_per_group -> N, H, W, channels
            center_feature_scale = center_feature_scale[..., None].repeat(
                1, 1, 1, 1, self.channels // self.group).flatten(-2)
            x = x * (1 - center_feature_scale) + x_proj * center_feature_scale
        x = self.output_proj(x)

        return x


class DCNv3(nn.Module):
    def __init__(
            self,
            channels=64,
            kernel_size=3,
            dw_kernel_size=None,
            stride=1,
            pad=1,
            dilation=1,
            group=4,
            offset_scale=1.0,
            act_layer='GELU',
            norm_layer='LN',
            center_feature_scale=False):
        """
        DCNv3 Module
        :param channels
        :param kernel_size
        :param stride
        :param pad
        :param dilation
        :param group
        :param offset_scale
        :param act_layer
        :param norm_layer
        """
        super().__init__()
        if channels % group != 0:
            raise ValueError(
                f'channels must be divisible by group, but got {channels} and {group}')
        _d_per_group = channels // group
        dw_kernel_size = dw_kernel_size if dw_kernel_size is not None else kernel_size
        # you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
        if not _is_power_of_2(_d_per_group):
            warnings.warn(
                "You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
                "which is more efficient in our CUDA implementation.")

        self.offset_scale = offset_scale
        self.channels = channels
        self.kernel_size = kernel_size
        self.dw_kernel_size = dw_kernel_size
        self.stride = stride
        self.dilation = dilation
        self.pad = pad
        self.group = group
        self.group_channels = channels // group
        self.offset_scale = offset_scale
        self.center_feature_scale = center_feature_scale
        
        self.dw_conv = nn.Sequential(
            nn.Conv2d(
                channels,
                channels,
                kernel_size=dw_kernel_size,
                stride=1,
                padding=(dw_kernel_size - 1) // 2,
                groups=channels),
            build_norm_layer(
                channels,
                norm_layer,
                'channels_first',
                'channels_last'),
            build_act_layer(act_layer))
        self.offset = nn.Linear(
            channels,
            group * kernel_size * kernel_size * 2)
        self.mask = nn.Linear(
            channels,
            group * kernel_size * kernel_size)
        self.input_proj = nn.Linear(channels, channels)
        self.output_proj = nn.Linear(channels, channels)
        self._reset_parameters()
        
        if center_feature_scale:
            self.center_feature_scale_proj_weight = nn.Parameter(
                torch.zeros((group, channels), dtype=torch.float))
            self.center_feature_scale_proj_bias = nn.Parameter(
                torch.tensor(0.0, dtype=torch.float).view((1,)).repeat(group, ))
            self.center_feature_scale_module = CenterFeatureScaleModule()

    def _reset_parameters(self):
        constant_(self.offset.weight.data, 0.)
        constant_(self.offset.bias.data, 0.)
        constant_(self.mask.weight.data, 0.)
        constant_(self.mask.bias.data, 0.)
        xavier_uniform_(self.input_proj.weight.data)
        constant_(self.input_proj.bias.data, 0.)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.)

    def forward(self, input):
        """
        :param query                       (N, H, W, C)
        :return output                     (N, H, W, C)
        """
        N, H, W, _ = input.shape

        x = self.input_proj(input)
        x_proj = x
        dtype = x.dtype

        x1 = input.permute(0, 3, 1, 2)
        x1 = self.dw_conv(x1)
        offset = self.offset(x1)
        mask = self.mask(x1).reshape(N, H, W, self.group, -1)
        mask = F.softmax(mask, -1).reshape(N, H, W, -1).type(dtype)

        x = DCNv3Function.apply(
            x, offset, mask,
            self.kernel_size, self.kernel_size,
            self.stride, self.stride,
            self.pad, self.pad,
            self.dilation, self.dilation,
            self.group, self.group_channels,
            self.offset_scale,
            256)
        
        if self.center_feature_scale:
            center_feature_scale = self.center_feature_scale_module(
                x1, self.center_feature_scale_proj_weight, self.center_feature_scale_proj_bias)
            # N, H, W, groups -> N, H, W, groups, 1 -> N, H, W, groups, _d_per_group -> N, H, W, channels
            center_feature_scale = center_feature_scale[..., None].repeat(
                1, 1, 1, 1, self.channels // self.group).flatten(-2)
            x = x * (1 - center_feature_scale) + x_proj * center_feature_scale
        x = self.output_proj(x)

        return x


def create_dummy_class(klass, dependency, message=""):
    """
    When a dependency of a class is not available, create a dummy class which throws ImportError
    when used.

    Args:
        klass (str): name of the class.
        dependency (str): name of the dependency.
        message: extra message to print
    Returns:
        class: a class object
    """
    err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
    if message:
        err = err + " " + message

    class _DummyMetaClass(type):
        # throw error on class attribute access
        def __getattr__(_, __):  # noqa: B902
            raise ImportError(err)

    class _Dummy(object, metaclass=_DummyMetaClass):
        # throw error on constructor
        def __init__(self, *args, **kwargs):
            raise ImportError(err)

    return _Dummy


def create_dummy_func(func, dependency, message=""):
    """
    When a dependency of a function is not available, create a dummy function which throws
    ImportError when used.

    Args:
        func (str): name of the function.
        dependency (str or list[str]): name(s) of the dependency.
        message: extra message to print
    Returns:
        function: a function object
    """
    err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
    if message:
        err = err + " " + message

    if isinstance(dependency, (list, tuple)):
        dependency = ",".join(dependency)

    def _dummy(*args, **kwargs):
        raise ImportError(err)

    return _dummy


try:
    from detrex import _C
except ImportError:
    # TODO: register ops natively so there is no need to import _C.
    _msg = "detrex is not compiled successfully, please build following the instructions!"
    _args = ("detrex._C", _msg)
    DCNv3 = create_dummy_class(  # noqa
        "DCNv3", *_args
    )