Spaces:
Runtime error
Runtime error
File size: 2,995 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/FrancescoSaverioZuppichini/glasses/blob/master/glasses/nn/blocks/__init__.py
# ------------------------------------------------------------------------------------------------
from functools import partial
import torch.nn as nn
class ConvNormAct(nn.Module):
"""Utility module that stacks one convolution 2D layer,
a normalization layer and an activation function.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int): Size of the convolving kernel. Default: 1.
stride (int): Stride of convolution. Default: 1.
padding (int): Padding added to all four sides of the input. Default: 0.
dilation (int): Spacing between kernel elements. Default: 1.
groups (int): Number of blocked connections from input channels
to output channels. Default: 1.
bias (bool): if True, adds a learnable bias to the output. Default: True.
norm_layer (nn.Module): Normalization layer used in `ConvNormAct`. Default: None.
activation (nn.Module): Activation layer used in `ConvNormAct`. Default: None.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
norm_layer: nn.Module = None,
activation: nn.Module = None,
**kwargs,
):
super(ConvNormAct, self).__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
**kwargs,
)
self.norm = norm_layer
self.activation = activation
def forward(self, x):
"""Forward function for `ConvNormAct`"""
x = self.conv(x)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
ConvNorm = partial(ConvNormAct, activation=None)
|