File size: 10,136 Bytes
3e99b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
import pickle
import torch
import torch.nn as nn
from termcolor import colored
from collections import defaultdict
from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Tuple
from fvcore.common.checkpoint import Checkpointer, _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel

import detectron2.utils.comm as comm
from detectron2.utils.file_io import PathManager

from .c2_model_loading import align_and_update_state_dicts


class DetectionCheckpointer(Checkpointer):
    """
    Same as :class:`Checkpointer`, but is able to:
    1. handle models in detectron & detectron2 model zoo, and apply conversions for legacy models.
    2. correctly load checkpoints that are only available on the master worker
    """

    def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables):
        is_main_process = comm.is_main_process()
        super().__init__(
            model,
            save_dir,
            save_to_disk=is_main_process if save_to_disk is None else save_to_disk,
            **checkpointables,
        )
        self.path_manager = PathManager

    def load(self, path, *args, **kwargs):
        need_sync = False

        if path and isinstance(self.model, DistributedDataParallel):
            logger = logging.getLogger(__name__)
            path = self.path_manager.get_local_path(path)
            has_file = os.path.isfile(path)
            all_has_file = comm.all_gather(has_file)
            if not all_has_file[0]:
                raise OSError(f"File {path} not found on main worker.")
            if not all(all_has_file):
                logger.warning(
                    f"Not all workers can read checkpoint {path}. "
                    "Training may fail to fully resume."
                )
                # TODO: broadcast the checkpoint file contents from main
                # worker, and load from it instead.
                need_sync = True
            if not has_file:
                path = None  # don't load if not readable
        ret = super().load(path, *args, **kwargs)

        if need_sync:
            logger.info("Broadcasting model states from main worker ...")
            self.model._sync_params_and_buffers()
        return ret

    def _load_file(self, filename):
        if filename.endswith(".pkl"):
            with PathManager.open(filename, "rb") as f:
                data = pickle.load(f, encoding="latin1")
            if "model" in data and "__author__" in data:
                # file is in Detectron2 model zoo format
                self.logger.info("Reading a file from '{}'".format(data["__author__"]))
                return data
            else:
                # assume file is from Caffe2 / Detectron1 model zoo
                if "blobs" in data:
                    # Detection models have "blobs", but ImageNet models don't
                    data = data["blobs"]
                data = {k: v for k, v in data.items() if not k.endswith("_momentum")}
                return {"model": data, "__author__": "Caffe2", "matching_heuristics": True}
        elif filename.endswith(".pyth"):
            # assume file is from pycls; no one else seems to use the ".pyth" extension
            with PathManager.open(filename, "rb") as f:
                data = torch.load(f)
            assert (
                "model_state" in data
            ), f"Cannot load .pyth file {filename}; pycls checkpoints must contain 'model_state'."
            model_state = {
                k: v
                for k, v in data["model_state"].items()
                if not k.endswith("num_batches_tracked")
            }
            return {"model": model_state, "__author__": "pycls", "matching_heuristics": True}

        loaded = super()._load_file(filename)  # load native pth checkpoint
        if "model" not in loaded:
            loaded = {"model": loaded}
        loaded["matching_heuristics"] = True
        return loaded

    def _load_model(self, checkpoint):
        if checkpoint.get("matching_heuristics", False):
            self._convert_ndarray_to_tensor(checkpoint["model"])
            # convert weights by name-matching heuristics
            checkpoint["model"] = align_and_update_state_dicts(
                self.model.state_dict(),
                checkpoint["model"],
                c2_conversion=checkpoint.get("__author__", None) == "Caffe2",
            )
        # for non-caffe2 models, use standard ways to load it
        incompatible = super()._load_model(checkpoint)

        model_buffers = dict(self.model.named_buffers(recurse=False))
        for k in ["pixel_mean", "pixel_std"]:
            # Ignore missing key message about pixel_mean/std.
            # Though they may be missing in old checkpoints, they will be correctly
            # initialized from config anyway.
            if k in model_buffers:
                try:
                    incompatible.missing_keys.remove(k)
                except ValueError:
                    pass
        for k in incompatible.unexpected_keys[:]:
            # Ignore unexpected keys about cell anchors. They exist in old checkpoints
            # but now they are non-persistent buffers and will not be in new checkpoints.
            if "anchor_generator.cell_anchors" in k:
                incompatible.unexpected_keys.remove(k)
        return incompatible

    def _log_incompatible_keys(self, incompatible: _IncompatibleKeys) -> None:
        """
        Log information about the incompatible keys returned by ``_load_model``.
        """
        for k, shape_checkpoint, shape_model in incompatible.incorrect_shapes:
            self.logger.warning(
                "Skip loading parameter '{}' to the model due to incompatible "
                "shapes: {} in the checkpoint but {} in the "
                "model! You might want to double check if this is expected.".format(
                    k, shape_checkpoint, shape_model
                )
            )
        if incompatible.missing_keys:
            missing_keys = _filter_reused_missing_keys(
                self.model, incompatible.missing_keys
            )
            if missing_keys:
                self.logger.warning(get_missing_parameters_message(missing_keys))
        if incompatible.unexpected_keys:
            self.logger.warning(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )


def _filter_reused_missing_keys(model: nn.Module, keys: List[str]) -> List[str]:
    """
    Filter "missing keys" to not include keys that have been loaded with another name.
    """
    keyset = set(keys)
    param_to_names = defaultdict(set)  # param -> names that points to it
    for module_prefix, module in _named_modules_with_dup(model):
        for name, param in list(module.named_parameters(recurse=False)) + list(
            module.named_buffers(recurse=False)
        ):
            full_name = (module_prefix + "." if module_prefix else "") + name
            param_to_names[param].add(full_name)
    for names in param_to_names.values():
        # if one name appears missing but its alias exists, then this
        # name is not considered missing
        if any(n in keyset for n in names) and not all(n in keyset for n in names):
            [keyset.remove(n) for n in names if n in keyset]
    return list(keyset)


def get_missing_parameters_message(keys: List[str]) -> str:
    """
    Get a logging-friendly message to report parameter names (keys) that are in
    the model but not found in a checkpoint.
    Args:
        keys (list[str]): List of keys that were not found in the checkpoint.
    Returns:
        str: message.
    """
    groups = _group_checkpoint_keys(keys)
    msg_per_group = sorted(k + _group_to_str(v) for k, v in groups.items())
    msg = "Some model parameters or buffers are not found in the checkpoint:\n"
    msg += "\n".join([colored(x, "blue") for x in msg_per_group])
    return msg

def _group_checkpoint_keys(keys: List[str]) -> Dict[str, List[str]]:
    """
    Group keys based on common prefixes. A prefix is the string up to the final
    "." in each key.
    Args:
        keys (list[str]): list of parameter names, i.e. keys in the model
            checkpoint dict.
    Returns:
        dict[list]: keys with common prefixes are grouped into lists.
    """
    groups = defaultdict(list)
    for key in keys:
        pos = key.rfind(".")
        if pos >= 0:
            head, tail = key[:pos], [key[pos + 1 :]]
        else:
            head, tail = key, []
        groups[head].extend(tail)
    return groups


def _group_to_str(group: List[str]) -> str:
    """
    Format a group of parameter name suffixes into a loggable string.
    Args:
        group (list[str]): list of parameter name suffixes.
    Returns:
        str: formated string.
    """
    if len(group) == 0:
        return ""

    if len(group) == 1:
        return "." + group[0]

    return ".{" + ", ".join(sorted(group)) + "}"


def get_unexpected_parameters_message(keys: List[str]) -> str:
    """
    Get a logging-friendly message to report parameter names (keys) that are in
    the checkpoint but not found in the model.
    Args:
        keys (list[str]): List of keys that were not found in the model.
    Returns:
        str: message.
    """
    groups = _group_checkpoint_keys(keys)
    msg = "The checkpoint state_dict contains keys that are not used by the model:\n"
    msg += "\n".join(
        "  " + colored(k + _group_to_str(v), "magenta") for k, v in groups.items()
    )
    return msg


def _named_modules_with_dup(
    model: nn.Module, prefix: str = ""
) -> Iterable[Tuple[str, nn.Module]]:
    """
    The same as `model.named_modules()`, except that it includes
    duplicated modules that have more than one name.
    """
    yield prefix, model
    for name, module in model._modules.items():
        if module is None:
            continue
        submodule_prefix = prefix + ("." if prefix else "") + name
        yield from _named_modules_with_dup(module, submodule_prefix)