Spaces:
Runtime error
Runtime error
File size: 10,136 Bytes
3e99b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
import pickle
import torch
import torch.nn as nn
from termcolor import colored
from collections import defaultdict
from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Tuple
from fvcore.common.checkpoint import Checkpointer, _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel
import detectron2.utils.comm as comm
from detectron2.utils.file_io import PathManager
from .c2_model_loading import align_and_update_state_dicts
class DetectionCheckpointer(Checkpointer):
"""
Same as :class:`Checkpointer`, but is able to:
1. handle models in detectron & detectron2 model zoo, and apply conversions for legacy models.
2. correctly load checkpoints that are only available on the master worker
"""
def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables):
is_main_process = comm.is_main_process()
super().__init__(
model,
save_dir,
save_to_disk=is_main_process if save_to_disk is None else save_to_disk,
**checkpointables,
)
self.path_manager = PathManager
def load(self, path, *args, **kwargs):
need_sync = False
if path and isinstance(self.model, DistributedDataParallel):
logger = logging.getLogger(__name__)
path = self.path_manager.get_local_path(path)
has_file = os.path.isfile(path)
all_has_file = comm.all_gather(has_file)
if not all_has_file[0]:
raise OSError(f"File {path} not found on main worker.")
if not all(all_has_file):
logger.warning(
f"Not all workers can read checkpoint {path}. "
"Training may fail to fully resume."
)
# TODO: broadcast the checkpoint file contents from main
# worker, and load from it instead.
need_sync = True
if not has_file:
path = None # don't load if not readable
ret = super().load(path, *args, **kwargs)
if need_sync:
logger.info("Broadcasting model states from main worker ...")
self.model._sync_params_and_buffers()
return ret
def _load_file(self, filename):
if filename.endswith(".pkl"):
with PathManager.open(filename, "rb") as f:
data = pickle.load(f, encoding="latin1")
if "model" in data and "__author__" in data:
# file is in Detectron2 model zoo format
self.logger.info("Reading a file from '{}'".format(data["__author__"]))
return data
else:
# assume file is from Caffe2 / Detectron1 model zoo
if "blobs" in data:
# Detection models have "blobs", but ImageNet models don't
data = data["blobs"]
data = {k: v for k, v in data.items() if not k.endswith("_momentum")}
return {"model": data, "__author__": "Caffe2", "matching_heuristics": True}
elif filename.endswith(".pyth"):
# assume file is from pycls; no one else seems to use the ".pyth" extension
with PathManager.open(filename, "rb") as f:
data = torch.load(f)
assert (
"model_state" in data
), f"Cannot load .pyth file {filename}; pycls checkpoints must contain 'model_state'."
model_state = {
k: v
for k, v in data["model_state"].items()
if not k.endswith("num_batches_tracked")
}
return {"model": model_state, "__author__": "pycls", "matching_heuristics": True}
loaded = super()._load_file(filename) # load native pth checkpoint
if "model" not in loaded:
loaded = {"model": loaded}
loaded["matching_heuristics"] = True
return loaded
def _load_model(self, checkpoint):
if checkpoint.get("matching_heuristics", False):
self._convert_ndarray_to_tensor(checkpoint["model"])
# convert weights by name-matching heuristics
checkpoint["model"] = align_and_update_state_dicts(
self.model.state_dict(),
checkpoint["model"],
c2_conversion=checkpoint.get("__author__", None) == "Caffe2",
)
# for non-caffe2 models, use standard ways to load it
incompatible = super()._load_model(checkpoint)
model_buffers = dict(self.model.named_buffers(recurse=False))
for k in ["pixel_mean", "pixel_std"]:
# Ignore missing key message about pixel_mean/std.
# Though they may be missing in old checkpoints, they will be correctly
# initialized from config anyway.
if k in model_buffers:
try:
incompatible.missing_keys.remove(k)
except ValueError:
pass
for k in incompatible.unexpected_keys[:]:
# Ignore unexpected keys about cell anchors. They exist in old checkpoints
# but now they are non-persistent buffers and will not be in new checkpoints.
if "anchor_generator.cell_anchors" in k:
incompatible.unexpected_keys.remove(k)
return incompatible
def _log_incompatible_keys(self, incompatible: _IncompatibleKeys) -> None:
"""
Log information about the incompatible keys returned by ``_load_model``.
"""
for k, shape_checkpoint, shape_model in incompatible.incorrect_shapes:
self.logger.warning(
"Skip loading parameter '{}' to the model due to incompatible "
"shapes: {} in the checkpoint but {} in the "
"model! You might want to double check if this is expected.".format(
k, shape_checkpoint, shape_model
)
)
if incompatible.missing_keys:
missing_keys = _filter_reused_missing_keys(
self.model, incompatible.missing_keys
)
if missing_keys:
self.logger.warning(get_missing_parameters_message(missing_keys))
if incompatible.unexpected_keys:
self.logger.warning(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
def _filter_reused_missing_keys(model: nn.Module, keys: List[str]) -> List[str]:
"""
Filter "missing keys" to not include keys that have been loaded with another name.
"""
keyset = set(keys)
param_to_names = defaultdict(set) # param -> names that points to it
for module_prefix, module in _named_modules_with_dup(model):
for name, param in list(module.named_parameters(recurse=False)) + list(
module.named_buffers(recurse=False)
):
full_name = (module_prefix + "." if module_prefix else "") + name
param_to_names[param].add(full_name)
for names in param_to_names.values():
# if one name appears missing but its alias exists, then this
# name is not considered missing
if any(n in keyset for n in names) and not all(n in keyset for n in names):
[keyset.remove(n) for n in names if n in keyset]
return list(keyset)
def get_missing_parameters_message(keys: List[str]) -> str:
"""
Get a logging-friendly message to report parameter names (keys) that are in
the model but not found in a checkpoint.
Args:
keys (list[str]): List of keys that were not found in the checkpoint.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg_per_group = sorted(k + _group_to_str(v) for k, v in groups.items())
msg = "Some model parameters or buffers are not found in the checkpoint:\n"
msg += "\n".join([colored(x, "blue") for x in msg_per_group])
return msg
def _group_checkpoint_keys(keys: List[str]) -> Dict[str, List[str]]:
"""
Group keys based on common prefixes. A prefix is the string up to the final
"." in each key.
Args:
keys (list[str]): list of parameter names, i.e. keys in the model
checkpoint dict.
Returns:
dict[list]: keys with common prefixes are grouped into lists.
"""
groups = defaultdict(list)
for key in keys:
pos = key.rfind(".")
if pos >= 0:
head, tail = key[:pos], [key[pos + 1 :]]
else:
head, tail = key, []
groups[head].extend(tail)
return groups
def _group_to_str(group: List[str]) -> str:
"""
Format a group of parameter name suffixes into a loggable string.
Args:
group (list[str]): list of parameter name suffixes.
Returns:
str: formated string.
"""
if len(group) == 0:
return ""
if len(group) == 1:
return "." + group[0]
return ".{" + ", ".join(sorted(group)) + "}"
def get_unexpected_parameters_message(keys: List[str]) -> str:
"""
Get a logging-friendly message to report parameter names (keys) that are in
the checkpoint but not found in the model.
Args:
keys (list[str]): List of keys that were not found in the model.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg = "The checkpoint state_dict contains keys that are not used by the model:\n"
msg += "\n".join(
" " + colored(k + _group_to_str(v), "magenta") for k, v in groups.items()
)
return msg
def _named_modules_with_dup(
model: nn.Module, prefix: str = ""
) -> Iterable[Tuple[str, nn.Module]]:
"""
The same as `model.named_modules()`, except that it includes
duplicated modules that have more than one name.
"""
yield prefix, model
for name, module in model._modules.items():
if module is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
yield from _named_modules_with_dup(module, submodule_prefix) |