Spaces:
Runtime error
Runtime error
File size: 7,642 Bytes
4d43dca 58324ac 4d43dca d36853b 4d43dca d36853b 4d43dca d36853b 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca 58324ac 4d43dca b250460 4d43dca 58324ac 4d43dca 58324ac 4d43dca b250460 4d43dca 58324ac 4d43dca 58324ac b250460 4d43dca b250460 0c44805 58324ac 027f95b 4d43dca 027f95b 7633bcc 4d43dca 027f95b 4d43dca 58324ac 4d43dca 58324ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import pymupdf
import docx
from pptx import Presentation
MODEL_LIST = ["nikravan/glm-4vq"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = MODEL_LIST[0]
MODEL_NAME = "GLM-4vq"
TITLE = "<h1>AI CHAT DOCS</h1>"
DESCRIPTION = f"""
<center>
<p>
<br>
USANDO MODELO: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
</center>"""
CSS = """
h1 {
text-align: center;
display: block;
}
"""
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
def extract_text(path):
return open(path, 'r').read()
def extract_pdf(path):
doc = pymupdf.open(path)
text = ""
for page in doc:
text += page.get_text()
return text
def extract_docx(path):
doc = docx.Document(path)
data = []
for paragraph in doc.paragraphs:
data.append(paragraph.text)
content = '\n\n'.join(data)
return content
def extract_pptx(path):
prs = Presentation(path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
def mode_load(path):
choice = ""
file_type = path.split(".")[-1]
print(file_type)
if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
if file_type.endswith("pdf"):
content = extract_pdf(path)
elif file_type.endswith("docx"):
content = extract_docx(path)
elif file_type.endswith("pptx"):
content = extract_pptx(path)
else:
content = extract_text(path)
choice = "doc"
print(content[:100])
return choice, content[:5000]
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
content = Image.open(path).convert('RGB')
choice = "image"
return choice, content
else:
raise gr.Error("Oops, unsupported files.")
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
)
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
prompt_files = []
if message["files"]:
choice, contents = mode_load(message["files"][-1])
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
else:
if len(history) == 0:
# raise gr.Error("Please upload an image first.")
contents = None
conversation.append({"role": "user", "content": message['text']})
else:
# image = Image.open(history[0][0][0])
for prompt, answer in history:
if answer is None:
prompt_files.append(prompt[0])
conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
if len(prompt_files) > 0:
choice, contents = mode_load(prompt_files[-1])
else:
choice = ""
conversation.append({"role": "user", "image": "", "content": message['text']})
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(
#rtl=True,
)
chat_input = gr.MultimodalTextbox(
interactive=True,
placeholder="Enter message or upload a file ...",
show_label=False,
#rtl=True,
)
EXAMPLES = [
[{"text": "Resumir Documento"}],
[{"text": "Explicar la Imagen"}],
[{"text": "¿De qué es la foto?", "files": ["perro.jpg"]}],
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=8192,
step=1,
value=4096,
label="Max Length",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
),
gr.Examples(EXAMPLES, [chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", ) |