File size: 5,330 Bytes
ac117b5
71382c0
fda141d
 
 
 
19dfa7a
 
0c8cec9
fda141d
71382c0
0c8af8a
 
ec656e5
 
0c8af8a
ec656e5
0c8af8a
 
 
 
 
 
fda141d
 
f98cc68
 
 
 
0c8cec9
fda141d
 
 
62efb75
0c8cec9
f98cc68
 
fda141d
19dfa7a
fda141d
19dfa7a
ec656e5
 
 
 
 
fda141d
 
 
f98cc68
fda141d
0c8cec9
fda141d
0c8cec9
fda141d
 
62efb75
fda141d
62efb75
0c8af8a
62efb75
 
0c8af8a
62efb75
 
0c8af8a
62efb75
 
0c8cec9
19dfa7a
 
 
 
 
 
 
 
 
0e5beb4
fda141d
0e5beb4
fda141d
 
19dfa7a
cb75880
62efb75
83811e8
7e647be
 
 
 
19dfa7a
ec656e5
 
fda141d
7e647be
 
fda141d
19dfa7a
62efb75
83811e8
 
 
 
 
 
 
e20eddc
83811e8
 
 
7e647be
 
 
62efb75
7e647be
83811e8
62efb75
83811e8
19dfa7a
 
 
 
 
fda141d
 
 
 
71382c0
19dfa7a
 
 
 
 
71382c0
ac117b5
 
19dfa7a
 
0c8cec9
 
ac117b5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr

from mammal_demo.demo_framework import (
    ModelRegistry,
    TaskRegistry,
)
from mammal_demo.dti_task import DtiTask
from mammal_demo.ppi_task import PpiTask
from mammal_demo.ps_task import PsTask
from mammal_demo.tcr_task import TcrTask

MAIN_MARKDOWN_TEXT = """

The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)**  model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.

Based on the [**MAMMAL** - **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage](https://arxiv.org/abs/2410.22367v2), a flexible, multi-domain architecture with an adaptable task prompt syntax.
The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.

This page demonstraits a variety of drug discovery and biomedical tasks for the model family.  Select the task to access the specific demos.
"""


all_tasks = TaskRegistry()
all_models = ModelRegistry()

# first create the required tasks
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
# we pass the all_models dict and update it when we actualy have the models.

ppi_task = all_tasks.register_task(PpiTask(model_dict=all_models))
tdi_task = all_tasks.register_task(DtiTask(model_dict=all_models))
ps_task = all_tasks.register_task(PsTask(model_dict=all_models))
tcr_task = all_tasks.register_task(TcrTask(model_dict=all_models))

# create the model holders. hold the model and the tokenizer, lazy download
# note that the list of relevent tasks needs to be stated.
all_models.register_model(
    model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
    task_list=[tdi_task],
)
all_models.register_model(
    model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
    task_list=[tdi_task],
)

all_models.register_model(
    model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
    task_list=[tcr_task],
)
all_models.register_model(
    model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
    task_list=[ps_task],
)
all_models.register_model(
    model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
    task_list=[ppi_task],
)
all_models.register_model(
    "ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox"
)
all_models.register_model(
    "ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda"
)
all_models.register_model(
    "ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp"
)


def create_application():
    def task_change(value):
        visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()]
        choices = [
            model_name
            for model_name, model in all_models.items()
            if value in model.tasks
        ]
        if choices:
            active = len(choices)>1
            return (
                gr.update(choices=choices, value=choices[0], interactive=active, visible=True, label=f"Matching Mammal models ({len(choices)})",),
                *visibility,
            )
        else:
            return (gr.update(visible=False, value=None, label="No Matching Mammal models"), *visibility,  )

    def model_change(value):
        return gr.update(
            value=f'[<span style="font-size:4em;">🤗</span>to model](https://huggingface.co/{value})',
            visible=value is not None,
        )

    with gr.Blocks(theme="../Zarkel/IBM_Carbon_Theme") as application:
        gr.Markdown(MAIN_MARKDOWN_TEXT, visible=True)
        task_dropdown = gr.Dropdown(
            choices=["Select task"] + list(all_tasks.keys()),
            label="Mammal Task",
        )
        task_dropdown.interactive = True
        with gr.Row():
            model_name_dropdown = gr.Dropdown(
                choices=[
                    model_name
                    for model_name, model in all_models.items()
                    if task_dropdown.value in model.tasks
                ],
                interactive=True,
                label="",
                visible=False,
                scale=10,
            )
            goto_card_button = gr.Markdown(
                "Link to model card",
                visible=False,
            )

            model_name_dropdown.change(
                model_change, inputs=[model_name_dropdown], outputs=[goto_card_button]
            )

        task_dropdown.change(
            task_change,
            inputs=[task_dropdown],
            outputs=[model_name_dropdown]
            + [
                all_tasks[task].demo(model_name_widgit=model_name_dropdown)
                for task in all_tasks
            ],
        )

        return application


full_demo = None


def main():
    global full_demo
    full_demo = create_application()
    full_demo.launch(show_error=True, share=False)
    # full_demo.launch(show_error=True, share=True)


if __name__ == "__main__":
    main()