File size: 7,195 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/python
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licens8.0es/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.ops import RoIAlign

import model.box_utils as box_utils
from model.graph import GraphTripleConv, GraphTripleConvNet
from model.layout import boxes_to_layout, masks_to_layout, boxes_to_seg, masks_to_seg
from model.layers import build_mlp,build_cnn
from model.utils import get_vocab

class Model(nn.Module):
  def __init__(self,
              embedding_dim=128,
              image_size=(128,128),
              input_dim=3,
              attribute_dim=35,
              # graph_net
              gconv_dim=128,
              gconv_hidden_dim=512,
              gconv_num_layers=5,
              # inside_cnn
              inside_cnn_arch="C3-32-2,C3-64-2,C3-128-2,C3-256-2",
              # refinement_net
              refinement_dims=(1024, 512, 256, 128, 64),
              # box_refine
              box_refine_arch = "I15,C3-64-2,C3-128-2,C3-256-2",
              roi_output_size = (8,8),
              roi_spatial_scale = 1.0/8.0,
              roi_cat_feature = True,
              # others
              mlp_activation='leakyrelu',
              mlp_normalization='none',
              cnn_activation='leakyrelu',
              cnn_normalization='batch'
              ):
    super(Model, self).__init__()
    ''' embedding '''
    vocab = get_vocab()
    self.vocab = vocab
    num_objs = len(vocab['object_idx_to_name'])
    num_preds = len(vocab['pred_idx_to_name'])
    num_doors = len(vocab['door_idx_to_name'])
    self.obj_embeddings = nn.Embedding(num_objs, embedding_dim)
    self.pred_embeddings = nn.Embedding(num_preds, embedding_dim)
    self.image_size = image_size
    self.feature_dim = embedding_dim+attribute_dim

    ''' graph_net '''
    self.gconv = GraphTripleConv(
      embedding_dim,
      attributes_dim=attribute_dim, 
      output_dim=gconv_dim,
      hidden_dim=gconv_hidden_dim,
      mlp_normalization=mlp_normalization
    )
    self.gconv_net = GraphTripleConvNet(
      gconv_dim,
      num_layers=gconv_num_layers-1,
      mlp_normalization=mlp_normalization
    )
  
    ''' inside_cnn '''
    inside_cnn,inside_feat_dim = build_cnn(
        f'I{input_dim},{inside_cnn_arch}',
        padding='valid'
    )
    self.inside_cnn = nn.Sequential(
      inside_cnn,
      nn.AdaptiveAvgPool2d(1)
    )
    inside_output_dim = inside_feat_dim
    obj_vecs_dim = gconv_dim+inside_output_dim

    ''' box_net '''
    box_net_dim = 4
    box_net_layers = [obj_vecs_dim, gconv_hidden_dim, box_net_dim]
    self.box_net = build_mlp(
      box_net_layers,
      activation=mlp_activation, 
      batch_norm=mlp_normalization
    )
    
    ''' relationship_net '''
    rel_aux_layers = [obj_vecs_dim, gconv_hidden_dim, num_doors]
    self.rel_aux_net = build_mlp(
      rel_aux_layers,
      activation=mlp_activation, 
      batch_norm=mlp_normalization
    )

    ''' refinement_net '''
    if refinement_dims!=None:
      self.refinement_net,_ = build_cnn(f"I{obj_vecs_dim},C3-128,C3-64,C3-{num_objs}")
    else:
      self.refinement_net = None

    ''' roi '''
    self.box_refine_backbone = None
    self.roi_cat_feature = roi_cat_feature
    if box_refine_arch!=None:
      box_refine_cnn,box_feat_dim = build_cnn(
        box_refine_arch,
        padding='valid'
      )
      self.box_refine_backbone = box_refine_cnn
      self.roi_align = RoIAlign(roi_output_size,roi_spatial_scale,-1) #(256,8,8)
      self.down_sample = nn.AdaptiveAvgPool2d(1)
      box_refine_layers = [obj_vecs_dim+256 if self.roi_cat_feature else 256, 512, 4]
      self.box_reg =build_mlp(
          box_refine_layers,
          activation=mlp_activation, 
          batch_norm=mlp_normalization
      )

  def forward(
    self, 
    objs, 
    triples, 
    boundary,
    obj_to_img=None,
    attributes=None,
    boxes_gt=None, 
    generate=False,
    refine=False,
    relative=False,
    inside_box=None
    ):
    """
    Required Inputs:
    - objs: LongTensor of shape (O,) giving categories for all objects
    - triples: LongTensor of shape (T, 3) where triples[t] = [s, p, o]
      means that there is a triple (objs[s], p, objs[o])

    Optional Inputs:
    - obj_to_img: LongTensor of shape (O,) where obj_to_img[o] = i
      means that objects[o] is an object in image i. If not given then
      all objects are assumed to belong to the same image.
    - boxes_gt: FloatTensor of shape (O, 4) giving boxes to use for computing
      the spatial layout; if not given then use predicted boxes.
    """
    # input size
    O, T = objs.size(0), triples.size(0)
    s, p, o = triples.chunk(3, dim=1)           # All have shape (T, 1)
    s, p, o = [x.squeeze(1) for x in [s, p, o]] # Now have shape (T,)
    edges = torch.stack([s, o], dim=1)          # Shape is (T, 2)
    B = boundary.size(0)
    H, W = self.image_size
  
    if obj_to_img is None:
      obj_to_img = torch.zeros(O, dtype=objs.dtype, device=objs.device)
    
    ''' embedding '''
    obj_vecs = self.obj_embeddings(objs)
    pred_vecs = self.pred_embeddings(p)

    ''' attribute '''
    if attributes is not None:
      obj_vecs = torch.cat([obj_vecs,attributes],1)
    obj_vecs_orig = obj_vecs
    
    ''' gconv '''
    obj_vecs, pred_vecs = self.gconv(obj_vecs, pred_vecs, edges)
    obj_vecs, pred_vecs = self.gconv_net(obj_vecs, pred_vecs, edges)

    ''' inside '''
    inside_vecs = self.inside_cnn(boundary).view(B,-1)
    obj_vecs = torch.cat([obj_vecs,inside_vecs[obj_to_img]],dim=1)

    ''' box '''
    boxes_pred = self.box_net(obj_vecs)
    if relative: boxes_pred = box_utils.box_rel2abs(boxes_pred,inside_box,obj_to_img)

    ''' relation '''
    # unused, for door position predition
    # rel_scores = self.rel_aux_net(obj_vecs)

    ''' generate '''
    gene_layout = None
    boxes_refine = None
    layout_boxes = boxes_pred if boxes_gt is None else boxes_gt
    if generate:
      layout_features = boxes_to_layout(obj_vecs,layout_boxes,obj_to_img,H,W)
      gene_layout = self.refinement_net(layout_features)
      
    ''' box refine '''
    if refine:
      gene_feat = self.box_refine_backbone(gene_layout)
      rois = torch.cat([
        obj_to_img.float().view(-1,1),
        box_utils.centers_to_extents(layout_boxes)*H
      ],-1)
      roi_feat = self.down_sample(self.roi_align(gene_feat,rois)).flatten(1)
      roi_feat = torch.cat([
        roi_feat,
        obj_vecs
      ],-1)
      boxes_refine = self.box_reg(roi_feat)
      if relative: boxes_refine = box_utils.box_rel2abs(boxes_refine,inside_box,obj_to_img)

    return boxes_pred, gene_layout, boxes_refine