File size: 6,872 Bytes
bfcf71e 44b21e0 bfcf71e 2b37d53 bfcf71e 44b21e0 66fa394 4f16778 66fa394 4f16778 66fa394 bfcf71e fad10f4 bfcf71e fad10f4 bfcf71e fad10f4 bfcf71e fad10f4 bfcf71e 2b37d53 bfcf71e 66fa394 bfcf71e 66fa394 bfcf71e 66fa394 bfcf71e 66fa394 bfcf71e 66fa394 bfcf71e 44b21e0 bfcf71e 66fa394 44b21e0 bfcf71e 66fa394 bfcf71e fad10f4 bfcf71e 36113cf ea06d0c a7b08fa ea06d0c 36113cf 39e4f73 bfcf71e a7b08fa bfcf71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Gradio demo of streaming generation of multiple LLM response pairs.
import spaces
import logging
import time
import html
import os
import numpy as np
import gradio as gr
import util
import huggingface_hub
import torch
import transformers
import accelerate
# For setting `requirements.txt`.
print('Dependency versions:')
print(f'huggingface_hub=={huggingface_hub.__version__}')
print(f'numpy=={np.__version__}')
print(f'torch=={torch.__version__}')
print(f'transformers=={transformers.__version__}')
print(f'accelerate=={accelerate.__version__}')
print()
# Initialize logging.
logging.basicConfig(format='%(levelname)s:%(name)s: %(message)s', level=logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# gr.DataFrame is currently bugged for updating values,
# so we must use raw HTML.
# https://github.com/gradio-app/gradio/issues/8160
css = '''
.response-table {
width: 100%;
table-layout: fixed;
}
.response-table th, .response-table td {
width: 50%;
}
.response-table td {
font-family: monospace;
white-space: pre-wrap;
text-align: left;
vertical-align: top;
}
.highlight {
background-color: #90FF90;
}
'''
def make_html_table(headers, data):
rows = ['<tr>' + ''.join(f'<th>{h}</th>' for h in headers) + '</tr>\n']
for row in data:
rows.append('<tr>' + ''.join(f'<td>{v}</td>' for v in row) + '</tr>\n')
return '<table class="response-table">\n' + ''.join(rows) + '</table>\n'
def highlight_prefix(tokens, prefix_len):
prefix_tokens = tokens[:prefix_len]
s = tokenizer.decode(tokens, skip_special_tokens=True)
prefix_s = tokenizer.decode(prefix_tokens, skip_special_tokens=True)
s_lcp_len = util.longest_common_prefix(np.array(list(s)), np.array(list(prefix_s)))
prefix_html = html.escape(s[:s_lcp_len])
suffix_html = html.escape(s[s_lcp_len:])
return f'<span class="highlight">{prefix_html}</span>{suffix_html}'
def format_response_pair(tokens_a, tokens_b):
# This is slightly convoluted, so as to properly handle grapheme clusters that span token boundaries.
token_lcp_len = util.longest_common_prefix(tokens_a, tokens_b)
return highlight_prefix(tokens_a, token_lcp_len), highlight_prefix(tokens_b, token_lcp_len)
HEADERS = ['Response (Left)', 'Response (Right)']
repo_id = "Qwen/Qwen2-0.5B-Instruct"
DRY_RUN = os.environ.get('DRY_RUN') == '1'
if DRY_RUN:
from load import load_tokenizer
tokenizer = load_tokenizer(repo_id)
def fn(max_tokens, num_responses, prompt_x, prompt_y):
logger.info('Starting generation...')
generation_start = time.perf_counter()
rows = [['']*2 for i in range(num_responses)]
yield make_html_table(HEADERS, rows)
for j in range(num_responses):
response_raw_a = f'Sure!\n\n1 2 3 4 & 5.'
response_raw_b = f'Sure!\n\n1 2 3 4 5 &\n\n\n\n6.'
response_tok_a = tokenizer.encode(response_raw_a, add_special_tokens=False, return_tensors='np')[0]
response_tok_b = tokenizer.encode(response_raw_b, add_special_tokens=False, return_tensors='np')[0]
steps = 1 + max(len(response_tok_a), len(response_tok_b))
for i in range(steps):
time.sleep(0.01)
prefix_tok_a = response_tok_a[:i]
prefix_tok_b = response_tok_b[:i]
content_a, content_b = format_response_pair(prefix_tok_a, prefix_tok_b)
rows[j][0] = content_a
rows[j][1] = content_b
yield make_html_table(HEADERS, rows)
generation_end = time.perf_counter()
logger.info(f'Generation took {(generation_end - generation_start):.3f} s')
else:
from load import load_model
import algorithms
#algorithms.logger.setLevel(logging.DEBUG)
model, tokenizer = load_model(repo_id)
def make_chat(system_msg, prompt):
chat = [
{
'role': 'system',
'content': system_msg,
},
{
'role': 'user',
'content': prompt,
},
]
return chat
@spaces.GPU
def fn(max_tokens, num_responses, prompt_x, prompt_y):
logger.info('Starting generation...')
generation_start = time.perf_counter()
# Is this necessary with ZeroGPU?
torch.use_deterministic_algorithms(True)
rows = [['']*2 for i in range(num_responses)]
yield make_html_table(HEADERS, rows)
for j in range(num_responses):
system_msg = "You are a helpful assistant."
chat_x = make_chat(system_msg, prompt_x)
chat_y = make_chat(system_msg, prompt_y)
gen = algorithms.apoc_streaming(
model,
model,
tokenizer,
chat_x,
chat_y,
max_tokens=max_tokens,
)
response_a_L = []
response_b_L = []
for token_a, token_b in gen:
dirty = False
if token_a is not None:
response_a_L.append(token_a)
dirty = True
if token_b is not None:
response_b_L.append(token_b)
dirty = True
if dirty:
content_a, content_b = format_response_pair(np.array(response_a_L), np.array(response_b_L))
rows[j][0] = content_a
rows[j][1] = content_b
yield make_html_table(HEADERS, rows)
generation_end = time.perf_counter()
logger.info(f'Generation took {(generation_end - generation_start):.3f} s')
demo = gr.Interface(
fn=fn,
inputs=[
gr.Slider(1, 512, label='Max Tokens', value=48),
gr.Slider(1, 16, step=1, label='Num Responses', value=8),
gr.Textbox(label='Prompt (Left)'),
gr.Textbox(label='Prompt (Right)'),
],
outputs=[
gr.HTML(),
],
css=css,
title='All-Prefix-Optimal Coupling',
description='Try similar prompts to see the effect of the difference between them. '
f'Model: `{repo_id}`.'
,
examples=[
[48, 8, 'Count from 1 to 5.', 'Count from 1 to 6.'],
# This would be a good example, but Qwen2-0.5B occasionally goes off-color.
#[48, 8, 'Tell me a joke.', 'Tell me a funny joke.'],
[48, 8, 'Calculate 3 + 4', 'Calculate 3 + 5'],
[48, 8, "What's the capital of Canada?", "What's the capital of France?"],
[48, 8, "1 3 5. What number is next?", "4 5 6. What number is next?"],
],
# In HuggingFace Spaces, this defaults to true, which makes startup
# take a very long time.
cache_examples=False,
)
demo.launch() |