Spaces:
No application file
No application file
File size: 15,456 Bytes
f3305db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""
Common utilities.
"""
from asyncio import AbstractEventLoop
from io import BytesIO
import base64
import json
import logging
import logging.handlers
import os
import platform
import sys
import time
from typing import AsyncGenerator, Generator
import warnings
import requests
from fastchat.constants import LOGDIR
handler = None
visited_loggers = set()
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
if sys.version_info[1] >= 9:
# This is for windows
logging.basicConfig(level=logging.INFO, encoding="utf-8")
else:
if platform.system() == "Windows":
warnings.warn(
"If you are running on Windows, "
"we recommend you use Python >= 3.9 for UTF-8 encoding."
)
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Avoid httpx flooding POST logs
logging.getLogger("httpx").setLevel(logging.WARNING)
# if LOGDIR is empty, then don't try output log to local file
if LOGDIR != "":
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when="D", utc=True, encoding="utf-8"
)
handler.setFormatter(formatter)
for l in [stdout_logger, stderr_logger, logger]:
if l in visited_loggers:
continue
visited_loggers.add(l)
l.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
encoded_message = line.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
self.linebuf = ""
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def get_gpu_memory(max_gpus=None):
"""Get available memory for each GPU."""
import torch
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024**3)
allocated_memory = torch.cuda.memory_allocated() / (1024**3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def oai_moderation(text, custom_thresholds=None):
"""
Check whether the text violates OpenAI moderation API.
"""
import openai
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
# default to true to be conservative
flagged = True
MAX_RETRY = 3
for _ in range(MAX_RETRY):
try:
res = client.moderations.create(input=text)
flagged = res.results[0].flagged
if custom_thresholds is not None:
for category, threshold in custom_thresholds.items():
if getattr(res.results[0].category_scores, category) > threshold:
flagged = True
break
except (openai.OpenAIError, KeyError, IndexError) as e:
print(f"MODERATION ERROR: {e}\nInput: {text}")
return flagged
def moderation_filter(text, model_list, do_moderation=False):
# Apply moderation for below models
MODEL_KEYWORDS = [
"claude",
"gpt",
"bard",
"mistral-large",
"command-r",
"dbrx",
"gemini",
"reka",
]
custom_thresholds = {"sexual": 0.3}
# set a stricter threshold for claude
for model in model_list:
if "claude" in model:
custom_thresholds = {"sexual": 0.2}
for keyword in MODEL_KEYWORDS:
for model in model_list:
if keyword in model:
do_moderation = True
break
if do_moderation:
return oai_moderation(text, custom_thresholds)
return False
def clean_flant5_ckpt(ckpt_path):
"""
Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings,
Use this function to make sure it can be correctly loaded.
"""
import torch
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json")
index_json = json.load(open(index_file, "r"))
weightmap = index_json["weight_map"]
share_weight_file = weightmap["shared.weight"]
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[
"shared.weight"
]
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]:
weight_file = weightmap[weight_name]
weight = torch.load(os.path.join(ckpt_path, weight_file))
weight[weight_name] = share_weight
torch.save(weight, os.path.join(ckpt_path, weight_file))
def pretty_print_semaphore(semaphore):
"""Print a semaphore in better format."""
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
"""A javascript function to get url parameters for the gradio web server."""
get_window_url_params_js = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log("url_params", url_params);
return url_params;
}
"""
get_window_url_params_with_tos_js = """
function() {
const params = new URLSearchParams(window.location.search);
const url_params = Object.fromEntries(params);
console.log("url_params", url_params);
const urlContainsLeaderboard = Object.keys(url_params).some(key => key.toLowerCase().includes("leaderboard"));
const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.";
if (!urlContainsLeaderboard) {
if (window.alerted_before) return;
alert(msg);
window.alerted_before = true;
}
return url_params;
}
"""
alert_js = """
() => {
if (window.alerted_before) return;
const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.";
alert(msg);
window.alerted_before = true;
}
"""
def iter_over_async(
async_gen: AsyncGenerator, event_loop: AbstractEventLoop
) -> Generator:
"""
Convert async generator to sync generator
:param async_gen: the AsyncGenerator to convert
:param event_loop: the event loop to run on
:returns: Sync generator
"""
ait = async_gen.__aiter__()
async def get_next():
try:
obj = await ait.__anext__()
return False, obj
except StopAsyncIteration:
return True, None
while True:
done, obj = event_loop.run_until_complete(get_next())
if done:
break
yield obj
def detect_language(text: str) -> str:
"""Detect the langauge of a string."""
import polyglot # pip3 install polyglot pyicu pycld2
from polyglot.detect import Detector
from polyglot.detect.base import logger as polyglot_logger
import pycld2
polyglot_logger.setLevel("ERROR")
try:
lang_code = Detector(text).language.name
except (pycld2.error, polyglot.detect.base.UnknownLanguage):
lang_code = "unknown"
return lang_code
def parse_gradio_auth_creds(filename: str):
"""Parse a username:password file for gradio authorization."""
gradio_auth_creds = []
with open(filename, "r", encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(",") if x.strip()]
if gradio_auth_creds:
auth = [tuple(cred.split(":")) for cred in gradio_auth_creds]
else:
auth = None
return auth
def is_partial_stop(output: str, stop_str: str):
"""Check whether the output contains a partial stop str."""
for i in range(0, min(len(output), len(stop_str))):
if stop_str.startswith(output[-i:]):
return True
return False
def run_cmd(cmd: str):
"""Run a bash command."""
print(cmd)
return os.system(cmd)
def is_sentence_complete(output: str):
"""Check whether the output is a complete sentence."""
end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”")
return output.endswith(end_symbols)
# Models don't use the same configuration key for determining the maximum
# sequence length. Store them here so we can sanely check them.
# NOTE: The ordering here is important. Some models have two of these and we
# have a preference for which value gets used.
SEQUENCE_LENGTH_KEYS = [
"max_position_embeddings",
"max_sequence_length",
"seq_length",
"max_seq_len",
"model_max_length",
]
def get_context_length(config):
"""Get the context length of a model from a huggingface model config."""
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling:
rope_scaling_factor = config.rope_scaling["factor"]
else:
rope_scaling_factor = 1
for key in SEQUENCE_LENGTH_KEYS:
val = getattr(config, key, None)
if val is not None:
return int(rope_scaling_factor * val)
return 2048
def str_to_torch_dtype(dtype: str):
import torch
if dtype is None:
return None
elif dtype == "float32":
return torch.float32
elif dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
else:
raise ValueError(f"Unrecognized dtype: {dtype}")
def load_image(image_file):
from PIL import Image
import requests
image = None
if image_file.startswith("http://") or image_file.startswith("https://"):
timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
response = requests.get(image_file, timeout=timeout)
image = Image.open(BytesIO(response.content))
elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
image = Image.open(image_file)
elif image_file.startswith("data:"):
image_file = image_file.split(",")[1]
image = Image.open(BytesIO(base64.b64decode(image_file)))
else:
image = Image.open(BytesIO(base64.b64decode(image_file)))
return image
def upload_image_file_to_gcs(image, filename):
from google.cloud import storage
import io
storage_client = storage.Client()
# upload file to GCS
bucket = storage_client.get_bucket("arena_service_data")
blob = bucket.blob(f"{filename}")
if not blob.exists():
buffer = io.BytesIO()
image.save(buffer, format="PNG")
buffer.seek(0)
blob.upload_from_file(buffer, content_type="image/png")
return blob.public_url
def get_image_file_from_gcs(filename):
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.get_bucket("arena_service_data")
blob = bucket.blob(f"{filename}")
contents = blob.download_as_bytes()
return contents
def image_moderation_request(image_bytes, endpoint, api_key):
headers = {"Content-Type": "image/jpeg", "Ocp-Apim-Subscription-Key": api_key}
MAX_RETRIES = 3
for _ in range(MAX_RETRIES):
response = requests.post(endpoint, headers=headers, data=image_bytes).json()
try:
if response["Status"]["Code"] == 3000:
break
except:
time.sleep(0.5)
return response
def image_moderation_provider(image, api_type):
if api_type == "nsfw":
endpoint = os.environ["AZURE_IMG_MODERATION_ENDPOINT"]
api_key = os.environ["AZURE_IMG_MODERATION_API_KEY"]
response = image_moderation_request(image, endpoint, api_key)
print(response)
return response["IsImageAdultClassified"]
elif api_type == "csam":
endpoint = (
"https://api.microsoftmoderator.com/photodna/v1.0/Match?enhance=false"
)
api_key = os.environ["PHOTODNA_API_KEY"]
response = image_moderation_request(image, endpoint, api_key)
return response["IsMatch"]
def image_moderation_filter(image):
print(f"moderating image")
image_bytes = base64.b64decode(image.base64_str)
nsfw_flagged = image_moderation_provider(image_bytes, "nsfw")
csam_flagged = False
if nsfw_flagged:
csam_flagged = image_moderation_provider(image_bytes, "csam")
return nsfw_flagged, csam_flagged
|