File size: 4,089 Bytes
f3305db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import datasets
from datasets import load_dataset
from PIL import Image
from pathlib import Path
import pandas as pd
import os
import json
import tqdm
import argparse
import shutil
import numpy as np

np.random.seed(0)

"""
Creates a directory with images and JSON files for VQA examples. Final json is located in metadata_sampled.json
"""


def download_images_and_create_json(
    dataset_info, cache_dir="~/vqa_examples_cache", base_dir="./vqa_examples"
):
    for dataset_name, info in dataset_info.items():
        dataset_cache_dir = os.path.join(cache_dir, dataset_name)
        os.makedirs(dataset_cache_dir, exist_ok=True)

        if info["subset"]:
            dataset = load_dataset(
                info["path"],
                info["subset"],
                cache_dir=dataset_cache_dir,
                split=info["split"],
            )
        else:
            dataset = load_dataset(
                info["path"], cache_dir=dataset_cache_dir, split=info["split"]
            )
        dataset_dir = os.path.join(base_dir, dataset_name)
        os.makedirs(dataset_dir, exist_ok=True)

        json_data = []
        for i, item in enumerate(tqdm.tqdm(dataset)):
            id_key = i if info["id_key"] == "index" else item[info["id_key"]]
            image_pil = item[info["image_key"]].convert("RGB")
            image_path = os.path.join(dataset_dir, f"{id_key}.jpg")
            image_pil.save(image_path)
            json_entry = {
                "dataset": dataset_name,
                "question": item[info["question_key"]],
                "path": image_path,
            }
            json_data.append(json_entry)

        with open(os.path.join(dataset_dir, "data.json"), "w") as json_file:
            json.dump(json_data, json_file, indent=4)
        # Delete the cache directory for the dataset
        shutil.rmtree(dataset_cache_dir, ignore_errors=True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir", type=str, default="~/.cache")
    parser.add_argument("--output_dir", type=str, default="./vqa_examples")
    args = parser.parse_args()

    datasets_info = {
        "DocVQA": {
            "path": "lmms-lab/DocVQA",
            "image_key": "image",
            "question_key": "question",
            "id_key": "questionId",
            "subset": "DocVQA",
            "split": "test",
        },
        "ChartQA": {
            "path": "HuggingFaceM4/ChartQA",
            "image_key": "image",
            "question_key": "query",
            "id_key": "index",
            "subset": False,
            "split": "test",
        },
        "realworldqa": {
            "path": "visheratin/realworldqa",
            "image_key": "image",
            "question_key": "question",
            "id_key": "index",
            "subset": False,
            "split": "test",
        },
        "NewYorker": {
            "path": "jmhessel/newyorker_caption_contest",
            "image_key": "image",
            "question_key": "questions",
            "id_key": "index",
            "subset": "explanation",
            "split": "train",
        },
        "WikiArt": {
            "path": "huggan/wikiart",
            "image_key": "image",
            "question_key": "artist",
            "id_key": "index",
            "subset": False,
            "split": "train",
        },
        "TextVQA": {
            "path": "facebook/textvqa",
            "image_key": "image",
            "question_key": "question",
            "id_key": "question_id",
            "subset": False,
            "split": "train",
        },
    }

    download_images_and_create_json(
        datasets_info, cache_dir=args.data_dir, base_dir=args.output_dir
    )
    dataset_json = []
    for dataset_name in datasets_info.keys():
        with open(f"{args.output_dir}/{dataset_name}/data.json") as f:
            data = json.load(f)
            dataset_json.extend(np.random.choice(data, 500))

    with open(f"{args.output_dir}/metadata_sampled.json", "w") as f:
        json.dump(dataset_json, f, indent=4)