File size: 3,741 Bytes
f3305db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Split long conversations based on certain max length.

Usage: python3 -m fastchat.data.split_long_conversation \
    --in sharegpt_clean.json \
    --out sharegpt_split.json \
    --model-name-or-path $<model-name>
"""
import argparse
from concurrent.futures import ProcessPoolExecutor
import json
from typing import Dict, Sequence, Optional

import transformers
from tqdm import tqdm


def make_sample(sample, start_idx, end_idx):
    assert (end_idx - start_idx) % 2 == 0
    return {
        "id": sample["id"] + "_" + str(start_idx),
        "model": sample.get("model", ""),
        "conversations": sample["conversations"][start_idx:end_idx],
    }


tokenizer = max_length = None


def split_one_sample(sample):
    tokenized_lens = []
    conversations = sample["conversations"]
    conversations = conversations[: len(conversations) // 2 * 2]
    for c in conversations:
        length = len(tokenizer(c["value"]).input_ids) + 6
        tokenized_lens.append(length)

    start_idx = 0
    cur_len = 0

    if len(conversations) % 2 != 0 or len(conversations) < 2:
        return []

    new_samples = []
    for i in range(0, len(conversations), 2):
        tmp_len = tokenized_lens[i] + tokenized_lens[i + 1]
        if cur_len + tmp_len > max_length:
            new_samples.append(make_sample(sample, start_idx, i))
            start_idx = i
            cur_len = 0
        elif i == len(conversations) - 2:
            new_samples.append(make_sample(sample, start_idx, i + 2))

        cur_len += tmp_len

    return new_samples


def worker(input_data):
    result = []
    for sample in input_data:
        result.extend(split_one_sample(sample))
    return result


def split_all(content, begin, end, tokenizer_, max_length_):
    """
    Keep the maximum round of conversations within the max token length constraint
    """
    global tokenizer, max_length
    tokenizer = tokenizer_
    max_length = max_length_

    content = content[begin:end]
    new_content = []

    # Split content into chunks
    chunks = [content[i : i + 1000] for i in range(0, len(content), 1000)]
    with ProcessPoolExecutor() as executor:
        for result in tqdm(executor.map(worker, chunks), total=len(chunks)):
            new_content.extend(result)

    return new_content


def filter_invalid_roles(content):
    new_content = []
    for i, c in enumerate(content):
        roles = ["human", "gpt"]
        if len(c["conversations"]) <= 0:
            continue

        valid = True
        for j, s in enumerate(c["conversations"]):
            if s["from"] != roles[j % 2]:
                valid = False
                break

        if valid:
            new_content.append(c)

    return new_content


def main(args):
    content = json.load(open(args.in_file, "r"))
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        args.model_name_or_path,
        model_max_length=args.max_length,
        padding_side="right",
        use_fast=False,
    )
    new_content = split_all(content, args.begin, args.end, tokenizer, args.max_length)
    new_content = filter_invalid_roles(new_content)

    print(f"#in: {len(content)}, #out: {len(new_content)}")
    json.dump(new_content, open(args.out_file, "w"), indent=2, ensure_ascii=False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--in-file", type=str, required=True)
    parser.add_argument("--out-file", type=str, default="sharegpt_split.json")
    parser.add_argument("--begin", type=int)
    parser.add_argument("--end", type=int)
    parser.add_argument("--model-name-or-path", type=str, required=True)
    parser.add_argument("--max-length", type=int, default=2048)
    args = parser.parse_args()
    main(args)