Spaces:
Runtime error
Runtime error
File size: 8,587 Bytes
c83dd81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
import sys
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from decord import VideoReader
from moviepy.editor import VideoFileClip, AudioFileClip
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/prompts/infer.yaml")
parser.add_argument("-W", type=int, default=768)
parser.add_argument("-H", type=int, default=768)
parser.add_argument("-L", type=int, default=240)
parser.add_argument("--seed", type=int, default=3407)
parser.add_argument("--context_frames", type=int, default=12)
parser.add_argument("--context_overlap", type=int, default=3)
parser.add_argument("--cfg", type=float, default=2.5)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--sample_rate", type=int, default=16000)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--ref_images_dir", type=str, default=f'./assets/halfbody_demo/refimag')
parser.add_argument("--audio_dir", type=str, default='./assets/halfbody_demo/audio')
parser.add_argument("--pose_dir", type=str, default="./assets/halfbody_demo/pose")
parser.add_argument("--refimg_name", type=str, default='natural_bk_openhand/0035.png')
parser.add_argument("--audio_name", type=str, default='chinese/echomimicv2_woman.wav')
parser.add_argument("--pose_name", type=str, default="01")
args = parser.parse_args()
return args
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = args.device
if device.__contains__("cuda") and not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
model_flag = '{}-iter{}'.format(config.motion_module_path.split('/')[-2], config.motion_module_path.split('/')[-1].split('-')[-1][:-4])
save_dir = Path(f"outputs/{model_flag}-seed{args.seed}/")
save_dir.mkdir(exist_ok=True, parents=True)
print(save_dir)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
## denoising net init
if os.path.exists(config.motion_module_path):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False
)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=device
)
pose_net.load_state_dict(torch.load(config.pose_encoder_path))
### load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
############# model_init finished #############
width, height = args.W, args.H
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=weight_dtype)
if args.seed is not None and args.seed > -1:
generator = torch.manual_seed(args.seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
final_fps = args.fps
ref_images_dir = args.ref_images_dir
audio_dir = args.audio_dir
pose_dir = args.pose_dir
refimg_name = args.refimg_name
audio_name = args.audio_name
pose_name = args.pose_name
inputs_dict = {
"refimg": f'{ref_images_dir}/{refimg_name}',
"audio": f'{audio_dir}/{audio_name}',
"pose": f'{pose_dir}/{pose_name}',
}
start_idx = 0
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
ref_flag = '.'.join([refimg_name.split('/')[-2], refimg_name.split('/')[-1]])
save_path = Path(f"{save_dir}/{ref_flag}/{pose_name}")
save_path.mkdir(exist_ok=True, parents=True)
ref_s = refimg_name.split('/')[-1].split('.')[0]
save_name = f"{save_path}/{ref_s}-a-{audio_name}-i{start_idx}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((args.W, args.H))
audio_clip = AudioFileClip(inputs_dict['audio'])
args.L = min(args.L, int(audio_clip.duration * final_fps), len(os.listdir(inputs_dict['pose'])))
pose_list = []
for index in range(start_idx, start_idx + args.L):
tgt_musk = np.zeros((args.W, args.H, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(args.L / final_fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:args.L,...],
width,
height,
args.L,
args.steps,
args.cfg,
generator=generator,
audio_sample_rate=args.sample_rate,
context_frames=args.context_frames,
fps=final_fps,
context_overlap=args.context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], args.L)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=final_fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
os.system("rm {}".format(save_name + "_woa_sig.mp4"))
print(save_name)
if __name__ == "__main__":
main()
|