File size: 8,758 Bytes
c83dd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from abc import ABC, abstractmethod
from diffusers import DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler
import torch
from diffusers.utils.torch_utils import randn_tensor
from IPython import embed
import numpy as np

class MySchedulers(ABC):
    def __init__(self) -> None:
        pass

    @abstractmethod
    def pred_prev(self,

        noisy_images, noisy_residual, timestep, timestep_prev

    ):
        raise NotImplementedError("not implemented")

def get_alpha(alphas_cumprod, timestep):
    timestep_lt_zero_mask = torch.lt(timestep, 0).to(alphas_cumprod.dtype)
    timestep_gt_999_mask = torch.gt(timestep, 999).to(alphas_cumprod.dtype)
    normal_alpha = alphas_cumprod[torch.clip(timestep, 0, 999)]
    one_alpha = torch.ones_like(normal_alpha).to(normal_alpha.dtype).to(normal_alpha.dtype) 
    zero_alpha = torch.zeros_like(normal_alpha).to(normal_alpha.dtype).to(normal_alpha.dtype) 
    return (normal_alpha * (1 - timestep_lt_zero_mask) + one_alpha * timestep_lt_zero_mask) * (1 - timestep_gt_999_mask) + zero_alpha * timestep_gt_999_mask

class MyDDIM(MySchedulers):
    def __init__(self, ddpm_or_ddim_scheduler, normnoise=False) -> None:
        super(MyDDIM, self).__init__()
        assert isinstance(ddpm_or_ddim_scheduler, DDPMScheduler) or isinstance(ddpm_or_ddim_scheduler, DDIMScheduler)
        self.alphas_cumprod = ddpm_or_ddim_scheduler.alphas_cumprod
        self.normnoise = normnoise
        self.prediction_type = ddpm_or_ddim_scheduler.config.prediction_type

    def pred_prev(self,

        noisy_images, model_output, timestep, timestep_prev

    ):
        torch_dtype = model_output.dtype

        #noisy_images = noisy_images.to(torch.float32)
        #noisy_residual = noisy_residual.to(torch.float32)

        #print(noisy_residual.std())
        
        #print(noisy_residual.std())

        alphas_cumprod = self.alphas_cumprod.to(noisy_images.device) #.to(noisy_images.dtype)
        alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1)
        beta_prod_t = 1 - alpha_prod_t

        if self.prediction_type == "epsilon":
            if self.normnoise:
                model_output = model_output / (torch.std(model_output, dim=(1,2,3), keepdim=True) + 0.0001)

            pred_original_sample = (noisy_images - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
            pred_epsilon = model_output
        elif self.prediction_type == "sample":
            pred_original_sample = model_output
            pred_epsilon = (noisy_images - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
        elif self.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * noisy_images - (beta_prod_t**0.5) * model_output
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * noisy_images

        alpha_prod_t_prev = get_alpha(alphas_cumprod, timestep_prev).view(-1, 1, 1, 1, 1)
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = (alpha_prod_t_prev ** (0.5)) * pred_original_sample + beta_prod_t_prev ** (0.5) * pred_epsilon

        return prev_sample.to(torch_dtype), pred_original_sample.to(torch_dtype)

    def pred_prev_train(self,

        noisy_images, noisy_residual, timestep, timestep_prev

    ):
        torch_dtype = noisy_residual.dtype

        #noisy_images = noisy_images.to(torch.float32)
        #noisy_residual = noisy_residual.to(torch.float32)

        print(noisy_residual.std())
        if self.normnoise:
            noisy_residual = noisy_residual / (torch.std(noisy_residual, dim=(1,2,3), keepdim=True) + 0.0001)

        print(noisy_residual.std())

        alphas_cumprod = self.alphas_cumprod.to(noisy_images.device) #.to(noisy_images.dtype)
        alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1).to(torch_dtype).detach()
        beta_prod_t = 1 - alpha_prod_t

        pred_original_sample = (noisy_images - beta_prod_t ** (0.5) * noisy_residual) / alpha_prod_t ** (0.5)
        pred_epsilon = noisy_residual

        alpha_prod_t_prev = get_alpha(alphas_cumprod, timestep_prev).view(-1, 1, 1, 1, 1).to(torch_dtype).detach()
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = beta_prod_t_prev ** (0.5) * pred_epsilon
        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = (alpha_prod_t_prev ** (0.5)) * pred_original_sample + pred_sample_direction

        #return prev_sample.to(torch_dtype), pred_original_sample.to(torch_dtype)
        #embed()
        assert prev_sample.dtype == torch_dtype
        assert pred_original_sample.dtype ==  torch_dtype

        return prev_sample, pred_original_sample
    
    
    def add_more_noise(self, noisy_latents, noise, timestep, timestep_more):
        alphas_cumprod = self.alphas_cumprod.to(noisy_latents.device)
        alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1)
        alpha_prod_t_more = get_alpha(alphas_cumprod, timestep_more).view(-1, 1, 1, 1, 1)

        sqrt_alpha_prod = alpha_prod_t ** (0.5)
        sqrt_one_minus_alpha_prod = (1 - alpha_prod_t) ** (0.5)
        sqrt_alpha_prod_more = alpha_prod_t_more ** (0.5)
        sqrt_one_minus_alpha_prod_more = (1 - alpha_prod_t_more) ** (0.5)

        #noisy_latents = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise_p
        #noisy_latents * (sqrt_alpha_prod_more / sqrt_alpha_prod) 
        #    = sqrt_alpha_prod_more * original_samples + sqrt_one_minus_alpha_prod * noise_p * (sqrt_alpha_prod_more / sqrt_alpha_prod) 

        noise_coe = ((sqrt_one_minus_alpha_prod_more ** 2) - (sqrt_one_minus_alpha_prod * sqrt_alpha_prod_more / sqrt_alpha_prod) ** 2) ** (0.5)

        return noisy_latents * (sqrt_alpha_prod_more / sqrt_alpha_prod) + noise_coe * noise
    

def get_sigma(sigmas, timestep):
    timestep_lt_zero_mask = torch.lt(timestep, 0).to(sigmas.dtype)
    normal_sigma = sigmas[torch.clip(timestep, 0)]
    zero_sigma = torch.zeros_like(normal_sigma).to(normal_sigma.dtype).to(normal_sigma.device) 
    return normal_sigma * (1 - timestep_lt_zero_mask) + zero_sigma * timestep_lt_zero_mask

class MyEulerA(MySchedulers):
    def __init__(self, eulera_scheduler, normnoise=False) -> None:
        super(MyEulerA, self).__init__()
        assert isinstance(eulera_scheduler, EulerAncestralDiscreteScheduler)
        self.sigmas = ((1 - eulera_scheduler.alphas_cumprod) / eulera_scheduler.alphas_cumprod) ** 0.5
        assert len(self.sigmas) == 1000
        self.generator = None
        self.normnoise = normnoise

    def pred_prev(self,

        noisy_images, noisy_residual, timestep, timestep_prev

    ):
        torch_dtype = noisy_residual.dtype
        noisy_images = noisy_images.to(torch.float32)
        noisy_residual = noisy_residual.to(torch.float32)

        if self.normnoise:
            noisy_residual = noisy_residual / (torch.std(noisy_residual, dim=(1,2,3), keepdim=True) + 0.0001)

        sigmas = self.sigmas.to(noisy_images.device)

        sigma_from = get_sigma(sigmas, timestep).view(-1, 1, 1, 1, 1)
        sigma_to = get_sigma(sigmas, timestep_prev).view(-1, 1, 1, 1, 1)
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
        
        sample = noisy_images * ((sigma_from**2 + 1) ** 0.5)

        pred_original_sample = sample - sigma_from * noisy_residual
        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_from

        dt = sigma_down - sigma_from

        prev_sample = sample + derivative * dt

        device = noisy_residual.device
        noise = randn_tensor(noisy_residual.shape, dtype=torch_dtype, device=device, generator=self.generator).to(noisy_residual.dtype)

        #embed()
        prev_sample = prev_sample + noise * sigma_up
        #print(sigma_up, ((sigma_to**2 + 1) ** 0.5))

        
        prev_sample = prev_sample / ((sigma_to**2 + 1) ** 0.5)

        #embed()

        return prev_sample.to(torch_dtype), pred_original_sample.to(torch_dtype)

    
if __name__ == "__main__":
    a = MyDDIM()