File size: 14,681 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from __future__ import print_function, division
import os
import sys
import math
import torch
import cv2
from PIL import Image
from skimage import io
from skimage import transform as ski_transform
from scipy import ndimage
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils

def _gaussian(
        size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
        height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
        mean_vert=0.5):
    # handle some defaults
    if width is None:
        width = size
    if height is None:
        height = size
    if sigma_horz is None:
        sigma_horz = sigma
    if sigma_vert is None:
        sigma_vert = sigma
    center_x = mean_horz * width + 0.5
    center_y = mean_vert * height + 0.5
    gauss = np.empty((height, width), dtype=np.float32)
    # generate kernel
    for i in range(height):
        for j in range(width):
            gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
                sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
    if normalize:
        gauss = gauss / np.sum(gauss)
    return gauss

def draw_gaussian(image, point, sigma):
    # Check if the gaussian is inside
    ul = [np.floor(np.floor(point[0]) - 3 * sigma),
          np.floor(np.floor(point[1]) - 3 * sigma)]
    br = [np.floor(np.floor(point[0]) + 3 * sigma),
          np.floor(np.floor(point[1]) + 3 * sigma)]
    if (ul[0] > image.shape[1] or ul[1] >
            image.shape[0] or br[0] < 1 or br[1] < 1):
        return image
    size = 6 * sigma + 1
    g = _gaussian(size)
    g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) -
           int(max(1, ul[0])) + int(max(1, -ul[0]))]
    g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) -
           int(max(1, ul[1])) + int(max(1, -ul[1]))]
    img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
    img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
    assert (g_x[0] > 0 and g_y[1] > 0)
    correct = False
    while not correct:
        try:
            image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
            ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
            correct = True
        except:
            print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br))
            ul = [np.floor(np.floor(point[0]) - 3 * sigma),
                np.floor(np.floor(point[1]) - 3 * sigma)]
            br = [np.floor(np.floor(point[0]) + 3 * sigma),
                np.floor(np.floor(point[1]) + 3 * sigma)]
            g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) -
                int(max(1, ul[0])) + int(max(1, -ul[0]))]
            g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) -
                int(max(1, ul[1])) + int(max(1, -ul[1]))]
            img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
            img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
            pass
    image[image > 1] = 1
    return image

def transform(point, center, scale, resolution, rotation=0, invert=False):
    _pt = np.ones(3)
    _pt[0] = point[0]
    _pt[1] = point[1]

    h = 200.0 * scale
    t = np.eye(3)
    t[0, 0] = resolution / h
    t[1, 1] = resolution / h
    t[0, 2] = resolution * (-center[0] / h + 0.5)
    t[1, 2] = resolution * (-center[1] / h + 0.5)

    if rotation != 0:
        rotation = -rotation
        r = np.eye(3)
        ang = rotation * math.pi / 180.0
        s = math.sin(ang)
        c = math.cos(ang)
        r[0][0] = c
        r[0][1] = -s
        r[1][0] = s
        r[1][1] = c

        t_ = np.eye(3)
        t_[0][2] = -resolution / 2.0
        t_[1][2] = -resolution / 2.0
        t_inv = torch.eye(3)
        t_inv[0][2] = resolution / 2.0
        t_inv[1][2] = resolution / 2.0
        t = reduce(np.matmul, [t_inv, r, t_, t])

    if invert:
        t = np.linalg.inv(t)
    new_point = (np.matmul(t, _pt))[0:2]

    return new_point.astype(int)

def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0):
    new_image = cv2.copyMakeBorder(image, center_shift,
                                   center_shift,
                                   center_shift,
                                   center_shift,
                                   cv2.BORDER_CONSTANT, value=[0,0,0])
    new_landmarks = landmarks.copy()
    if center_shift != 0:
        center[0] += center_shift
        center[1] += center_shift
        new_landmarks = new_landmarks + center_shift
    length = 200 * scale
    top = int(center[1] - length // 2)
    bottom = int(center[1] + length // 2)
    left = int(center[0] - length // 2)
    right = int(center[0] + length // 2)
    y_pad = abs(min(top, new_image.shape[0] - bottom, 0))
    x_pad = abs(min(left, new_image.shape[1] - right, 0))
    top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad
    new_image = cv2.copyMakeBorder(new_image, y_pad,
                                   y_pad,
                                   x_pad,
                                   x_pad,
                                   cv2.BORDER_CONSTANT, value=[0,0,0])
    new_image = new_image[top:bottom, left:right]
    new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)),
                           interpolation=cv2.INTER_LINEAR)
    new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length
    new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length
    return new_image, new_landmarks

def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256):
    img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale)
    ones = np.ones(shape=(landmarks.shape[0], 1))
    stacked_landmarks = np.hstack([landmarks, ones])
    new_landmarks = img_mat.dot(stacked_landmarks.T).T
    if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0:
        return image, landmarks, heatmap
    else:
        new_image = cv2.warpAffine(image, img_mat, (resolution, resolution))
        if heatmap is not None:
            new_heatmap = np.zeros((heatmap.shape[0], 64, 64))
            for i in range(heatmap.shape[0]):
                if new_landmarks[i][0] > 0:
                    new_heatmap[i] = draw_gaussian(new_heatmap[i],
                                                   new_landmarks[i]/4.0+1, 1)
        return new_image, new_landmarks, new_heatmap

def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
    """Show image with pred_landmarks"""
    pred_landmarks = []
    pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
    pred_landmarks = pred_landmarks.squeeze()*4

    # pred_landmarks2 = get_preds_fromhm2(heatmap)
    heatmap = np.max(gt_heatmap, axis=0)
    heatmap = heatmap / np.max(heatmap)
    # image = ski_transform.resize(image, (64, 64))*255
    image = image.astype(np.uint8)
    heatmap = np.max(gt_heatmap, axis=0)
    heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
    heatmap *= 255
    heatmap = heatmap.astype(np.uint8)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    plt.imshow(image)
    plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g')
    plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r')
    plt.pause(0.001)  # pause a bit so that plots are updated

def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68):
    '''
       Calculate total NME for a batch of data

       Args:
           pred_heatmaps: torch tensor of size [batch, points, height, width]
           gt_landmarks: torch tesnsor of size [batch, points, x, y]

       Returns:
           nme: sum of nme for this batch
    '''
    nme = 0
    pred_landmarks, _ = get_preds_fromhm(pred_heatmaps)
    pred_landmarks = pred_landmarks.numpy()
    gt_landmarks = gt_landmarks.numpy()
    for i in range(pred_landmarks.shape[0]):
        pred_landmark = pred_landmarks[i] * 4.0
        gt_landmark = gt_landmarks[i]

        if num_landmarks == 68:
            left_eye = np.average(gt_landmark[36:42], axis=0)
            right_eye = np.average(gt_landmark[42:48], axis=0)
            norm_factor = np.linalg.norm(left_eye - right_eye)
            # norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45])
        elif num_landmarks == 98:
            norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72])
        elif num_landmarks == 19:
            left, top = gt_landmark[-2, :]
            right, bottom = gt_landmark[-1, :]
            norm_factor = math.sqrt(abs(right - left)*abs(top-bottom))
            gt_landmark = gt_landmark[:-2, :]
        elif num_landmarks == 29:
            # norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9])
            norm_factor = np.linalg.norm(gt_landmark[16]- gt_landmark[17])
        nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
    return nme

def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68):
    '''
       Calculate total NME for a batch of data

       Args:
           pred_heatmaps: torch tensor of size [batch, points, height, width]
           gt_landmarks: torch tesnsor of size [batch, points, x, y]

       Returns:
           nme: sum of nme for this batch
    '''
    nme = 0
    pred_landmarks, _ = get_index_fromhm(pred_heatmaps)
    pred_landmarks = pred_landmarks.numpy()
    gt_landmarks = gt_landmarks.numpy()
    for i in range(pred_landmarks.shape[0]):
        pred_landmark = pred_landmarks[i] * 4.0
        gt_landmark = gt_landmarks[i]
        if num_landmarks == 68:
            left_eye = np.average(gt_landmark[36:42], axis=0)
            right_eye = np.average(gt_landmark[42:48], axis=0)
            norm_factor = np.linalg.norm(left_eye - right_eye)
        else:
            norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72])
        nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
    return nme

def power_transform(img, power):
    img = np.array(img)
    img_new = np.power((img/255.0), power) * 255.0
    img_new = img_new.astype(np.uint8)
    img_new = Image.fromarray(img_new)
    return img_new

def get_preds_fromhm(hm, center=None, scale=None, rot=None):
    max, idx = torch.max(
        hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
    idx += 1
    preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
    preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
    preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)

    for i in range(preds.size(0)):
        for j in range(preds.size(1)):
            hm_ = hm[i, j, :]
            pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
            if pX > 0 and pX < 63 and pY > 0 and pY < 63:
                diff = torch.FloatTensor(
                    [hm_[pY, pX + 1] - hm_[pY, pX - 1],
                     hm_[pY + 1, pX] - hm_[pY - 1, pX]])
                preds[i, j].add_(diff.sign_().mul_(.25))

    preds.add_(-0.5)

    preds_orig = torch.zeros(preds.size())
    if center is not None and scale is not None:
        for i in range(hm.size(0)):
            for j in range(hm.size(1)):
                preds_orig[i, j] = transform(
                    preds[i, j], center, scale, hm.size(2), rot, True)

    return preds, preds_orig

def get_index_fromhm(hm):
    max, idx = torch.max(
        hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
    preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
    preds[..., 0].remainder_(hm.size(3))
    preds[..., 1].div_(hm.size(2)).floor_()

    for i in range(preds.size(0)):
        for j in range(preds.size(1)):
            hm_ = hm[i, j, :]
            pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1])
            if pX > 0 and pX < 63 and pY > 0 and pY < 63:
                diff = torch.FloatTensor(
                    [hm_[pY, pX + 1] - hm_[pY, pX - 1],
                     hm_[pY + 1, pX] - hm_[pY - 1, pX]])
                preds[i, j].add_(diff.sign_().mul_(.25))

    return preds

def shuffle_lr(parts, num_landmarks=68, pairs=None):
    if num_landmarks == 68:
        if pairs is None:
            pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10],
                    [7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45],
                    [37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34],
                    [50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]]
    elif num_landmarks == 98:
        if pairs is None:
            pairs = [[0, 32], [1,31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [96, 97], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [88, 92], [89, 91], [95, 93], [87, 83], [86, 84]]
    elif num_landmarks == 19:
        if pairs is None:
            pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]]
    elif num_landmarks == 29:
        if pairs is None:
            pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]]
    for matched_p in pairs:
        idx1, idx2 = matched_p[0], matched_p[1]
        tmp = np.copy(parts[idx1])
        np.copyto(parts[idx1], parts[idx2])
        np.copyto(parts[idx2], tmp)
    return parts


def generate_weight_map(weight_map,heatmap):

    k_size = 3
    dilate = ndimage.grey_dilation(heatmap ,size=(k_size,k_size))
    weight_map[np.where(dilate>0.2)] = 1
    return weight_map

def fig2data(fig):
    """
    @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
    @param fig a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    # draw the renderer
    fig.canvas.draw ( )

    # Get the RGB buffer from the figure
    w,h = fig.canvas.get_width_height()
    buf = np.fromstring (fig.canvas.tostring_rgb(), dtype=np.uint8)
    buf.shape = (w, h, 3)

    # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
    buf = np.roll (buf, 3, axis=2)
    return buf