Spaces:
Sleeping
Sleeping
File size: 22,613 Bytes
dd38ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import numpy as np
import os
from scipy.io import loadmat
import cv2
from menpo.shape.pointcloud import PointCloud
from menpo.transform import ThinPlateSplines
import menpo.io as mio
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
from glob import glob
from deformation_functions import *
'''********* bounding box and image loading functions *********'''
def center_margin_bb(bb, img_bounds, margin=0.25):
bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]])
margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2
bb_new = np.zeros_like(bb)
bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0)
bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1])
bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0)
bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0])
return bb_new
def load_bb_files(bb_file_dirs):
bb_files_dict = {}
for bb_file in bb_file_dirs:
bb_mat = loadmat(bb_file)['bounding_boxes']
num_imgs = np.max(bb_mat.shape)
for i in range(num_imgs):
name = bb_mat[0][i][0][0][0][0]
bb_init = bb_mat[0][i][0][0][1] - 1 # matlab indicies
bb_gt = bb_mat[0][i][0][0][2] - 1 # matlab indicies
if str(name) in bb_files_dict.keys():
print str(name), 'already loaded from: ', bb_file
bb_files_dict[str(name)] = (bb_init, bb_gt)
return bb_files_dict
def load_bb_dictionary(bb_dir, mode, test_data='full'):
if mode == 'TRAIN':
bb_dirs = \
['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
else:
if test_data == 'common':
bb_dirs = \
['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
elif test_data == 'challenging':
bb_dirs = ['bounding_boxes_ibug.mat']
elif test_data == 'full':
bb_dirs = \
['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
elif test_data == 'training':
bb_dirs = \
['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
else:
bb_dirs=None
if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']:
bb_files_dict = None
else:
bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs]
bb_files_dict = load_bb_files(bb_dirs)
return bb_files_dict
def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256):
name = img.path.name
img_bounds = img.bounds()[1]
if bb_dictionary is None:
bb_menpo = img.landmarks['PTS'].bounding_box().points
bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]])
else:
if gt:
bb = bb_dictionary[name][1] # ground truth
else:
bb = bb_dictionary[name][0] # init from face detector
bb = center_margin_bb(bb, img_bounds, margin=margin)
bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]],
[bb[0, 3], bb[0, 0]],
[bb[0, 3], bb[0, 2]],
[bb[0, 1], bb[0, 2]]]))
face_crop = img.crop_to_pointcloud(bb_pointcloud).resize([image_size, image_size])
return face_crop
def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True):
# taken from MDM
jaw_indices = np.arange(0, 17)
lbrow_indices = np.arange(17, 22)
rbrow_indices = np.arange(22, 27)
upper_nose_indices = np.arange(27, 31)
lower_nose_indices = np.arange(31, 36)
leye_indices = np.arange(36, 42)
reye_indices = np.arange(42, 48)
outer_mouth_indices = np.arange(48, 60)
inner_mouth_indices = np.arange(60, 68)
mirrored_parts_68 = np.hstack([
jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1],
upper_nose_indices, lower_nose_indices[::-1],
np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4),
np.roll(outer_mouth_indices[::-1], 7),
np.roll(inner_mouth_indices[::-1], 5)
])
def mirror_landmarks_68(lms, im_size):
return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector(
).reshape(-1, 2))[mirrored_parts_68])
def mirror_image(im):
im = im.copy()
im.pixels = im.pixels[..., ::-1].copy()
for group in im.landmarks:
lms = im.landmarks[group]
if lms.points.shape[0] == 68:
im.landmarks[group] = mirror_landmarks_68(lms, im.shape)
return im
lim = image_size - crop_size
min_crop_inds = np.random.randint(0, lim, 2)
max_crop_inds = min_crop_inds + crop_size
flip_rand = np.random.random() > 0.5
rot_angle = 2 * angle_range * np.random.random_sample() - angle_range
if flip and flip_rand:
rand_crop = img.crop(min_crop_inds, max_crop_inds)
rand_crop = mirror_image(rand_crop)
rand_crop = rand_crop.rotate_ccw_about_centre(rot_angle).resize([image_size, image_size])
else:
rand_crop = img.crop(min_crop_inds, max_crop_inds). \
rotate_ccw_about_centre(rot_angle).resize([image_size, image_size])
return rand_crop
def load_menpo_image_list(img_dir, mode, bb_dictionary=None, image_size=256, margin=0.25, bb_type='gt',
test_data='full', augment=True):
def crop_to_face_image_gt(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size):
return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)
def crop_to_face_image_init(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size):
return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)
if mode is 'TRAIN':
img_set_dir = os.path.join(img_dir, 'training_set')
else:
img_set_dir = os.path.join(img_dir, test_data + '_set')
image_menpo_list = mio.import_images(img_set_dir, verbose=True)
if bb_type is 'gt':
face_crop_image_list = image_menpo_list.map(crop_to_face_image_gt)
else:
face_crop_image_list = image_menpo_list.map(crop_to_face_image_init)
if mode is 'TRAIN' and augment:
out_image_list = face_crop_image_list.map(augment_face_image)
else:
out_image_list = face_crop_image_list
return out_image_list
def augment_menpo_img_ns(img, img_dir_ns, p_ns=0):
img = img.copy()
texture_aug = p_ns > 0.5
if texture_aug:
ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '*'))
num_augs = len(ns_augs)
if num_augs > 1:
ns_ind = np.random.randint(1, num_augs)
ns_aug = mio.import_image(ns_augs[ns_ind])
ns_pixels = ns_aug.pixels
img.pixels = ns_pixels
return img
def augment_menpo_img_geom(img, p_geom=0):
img = img.copy()
if p_geom > 0.5:
lms_geom_warp=deform_face_geometric_style(img.landmarks['PTS'].points.copy(),p_scale=p_geom,p_shift=p_geom)
img = warp_face_image_tps(img,PointCloud(lms_geom_warp))
return img
def warp_face_image_tps(img,new_shape):
tps = ThinPlateSplines(new_shape, img.landmarks['PTS'])
img_warp=img.warp_to_shape(img.shape,tps)
img_warp.landmarks['PTS']=new_shape
return img_warp
def load_menpo_image_list_artistic_aug(
img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,
bb_type='gt', test_data='full',augment_basic=True, augment_texture=False, p_texture=0,
augment_geom=False, p_geom=0):
def crop_to_face_image_gt(img):
return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)
def crop_to_face_image_init(img):
return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)
def augment_menpo_img_ns_rand(img):
return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() <= p_texture))
def augment_menpo_img_geom_rand(img):
return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() <= p_geom))
if mode is 'TRAIN':
img_set_dir = os.path.join(img_dir, train_crop_dir)
out_image_list = mio.import_images(img_set_dir, verbose=True)
if augment_texture:
out_image_list = out_image_list.map(augment_menpo_img_ns_rand)
if augment_geom:
out_image_list = out_image_list.map(augment_menpo_img_geom_rand)
if augment_basic:
out_image_list = out_image_list.map(augment_face_image)
else:
img_set_dir = os.path.join(img_dir, test_data + '_set')
out_image_list = mio.import_images(img_set_dir, verbose=True)
if test_data in ['full', 'challenging', 'common', 'training', 'test']:
if bb_type is 'gt':
out_image_list = out_image_list.map(crop_to_face_image_gt)
elif bb_type is 'init':
out_image_list = out_image_list.map(crop_to_face_image_init)
return out_image_list
def reload_img_menpo_list_artistic_aug_train(
img_dir, train_crop_dir, img_dir_ns, mode, train_inds, image_size=256,
augment_basic=True, augment_texture=False, p_texture=0, augment_geom=False, p_geom=0):
img_menpo_list = load_menpo_image_list_artistic_aug(
img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode,image_size=image_size,
augment_basic=augment_basic, augment_texture=augment_texture, p_texture=p_texture, augment_geom=augment_geom,
p_geom=p_geom)
img_menpo_list_train = img_menpo_list[train_inds]
return img_menpo_list_train
'''********* heat-maps and image loading functions *********'''
# look for: ECT-FaceAlignment/caffe/src/caffe/layers/data_heatmap.cpp
def gaussian(x, y, x0, y0, sigma=6):
return 1./(np.sqrt(2*np.pi)*sigma) * np.exp(-0.5 * ((x-x0)**2 + (y-y0)**2) / sigma**2)
def create_heat_maps(landmarks, num_landmarks=68, image_size=256, sigma=6):
x, y = np.mgrid[0:image_size, 0:image_size]
maps = np.zeros((image_size, image_size, num_landmarks))
for i in range(num_landmarks):
out = gaussian(x, y, landmarks[i,0], landmarks[i,1], sigma=sigma)
maps[:, :, i] = (8./3)*sigma*out # copied from ECT
return maps
def load_data(img_list, batch_inds, image_size=256, c_dim=3, num_landmarks=68 , sigma=6, scale='255',
save_landmarks=False, primary=False):
num_inputs = len(batch_inds)
batch_menpo_images = img_list[batch_inds]
images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32')
maps_small = np.zeros([num_inputs, image_size/4, image_size/4, num_landmarks]).astype('float32')
if primary:
maps = None
else:
maps = np.zeros([num_inputs, image_size, image_size, num_landmarks]).astype('float32')
if save_landmarks:
landmarks = np.zeros([num_inputs, num_landmarks, 2]).astype('float32')
else:
landmarks = None
for ind, img in enumerate(batch_menpo_images):
images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3)
if primary:
lms = img.resize([image_size/4,image_size/4]).landmarks['PTS'].points
maps_small[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size/4, sigma)
else:
lms = img.landmarks['PTS'].points
maps[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size, sigma)
maps_small[ind, :, :, :]=zoom(maps[ind, :, :, :],(0.25,0.25,1))
if save_landmarks:
landmarks[ind, :, :] = lms
if scale is '255':
images *= 255 # SAME AS ECT?
elif scale is '0':
images = 2 * images - 1
return images, maps, maps_small, landmarks
def heat_maps_to_image(maps, landmarks=None, image_size=256, num_landmarks=68):
if landmarks is None:
landmarks = heat_maps_to_landmarks(maps, image_size=image_size, num_landmarks=num_landmarks)
x, y = np.mgrid[0:image_size, 0:image_size]
pixel_dist = np.sqrt(
np.square(np.expand_dims(x, 2) - landmarks[:, 0]) + np.square(np.expand_dims(y, 2) - landmarks[:, 1]))
nn_landmark = np.argmin(pixel_dist, 2)
map_image = maps[x, y, nn_landmark]
map_image = (map_image-map_image.min())/(map_image.max()-map_image.min()) # normalize for visualization
return map_image
def heat_maps_to_landmarks(maps, image_size=256, num_landmarks=68):
landmarks = np.zeros((num_landmarks,2)).astype('float32')
for m_ind in range(num_landmarks):
landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size))
return landmarks
def batch_heat_maps_to_landmarks(batch_maps, batch_size, image_size=256, num_landmarks=68):
batch_landmarks = np.zeros((batch_size,num_landmarks, 2)).astype('float32')
for i in range(batch_size):
batch_landmarks[i,:,:]=heat_maps_to_landmarks(
batch_maps[i,:,:,:], image_size=image_size, num_landmarks=num_landmarks)
return batch_landmarks
def print_training_params_to_file(init_locals):
del init_locals['self']
with open(os.path.join(init_locals['save_log_path'], 'Training_Parameters.txt'), 'w') as f:
f.write('Training Parameters:\n\n')
for key, value in init_locals.items():
f.write('* %s: %s\n' % (key, value))
def create_img_with_landmarks(image, landmarks, image_size=256, num_landmarks=68, scale='255', circle_size=2):
image = image.reshape(image_size, image_size, -1)
if scale is '0':
image = 127.5 * (image + 1)
elif scale is '1':
image *= 255
landmarks = landmarks.reshape(num_landmarks, 2)
landmarks = np.clip(landmarks, 0, image_size)
for (y, x) in landmarks.astype('int'):
cv2.circle(image, (x, y), circle_size, (255, 0, 0), -1)
return image
def merge_images_landmarks_maps(images, maps, image_size=256, num_landmarks=68, num_samples=9, scale='255',
circle_size=2):
images = images[:num_samples]
if maps.shape[1] is not image_size:
images = zoom(images, (1, 0.25, 0.25, 1))
image_size /= 4
cmap = plt.get_cmap('jet')
row = int(np.sqrt(num_samples))
merged = np.zeros([row * image_size, row * image_size * 2, 3])
for idx, img in enumerate(images):
i = idx // row
j = idx % row
img_lamdmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
map_image = heat_maps_to_image(maps[idx, :, :, :], img_lamdmarks, image_size=image_size,
num_landmarks=num_landmarks)
rgba_map_image = cmap(map_image)
map_image = np.delete(rgba_map_image, 3, 2) * 255
img = create_img_with_landmarks(img, img_lamdmarks, image_size, num_landmarks, scale=scale,
circle_size=circle_size)
merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = img
merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image
return merged
def merge_compare_maps(maps_small, maps, image_size=64, num_landmarks=68, num_samples=9):
maps_small = maps_small[:num_samples]
maps = maps[:num_samples]
if maps_small.shape[1] is not image_size:
image_size = maps_small.shape[1]
if maps.shape[1] is not maps_small.shape[1]:
maps_rescale = zoom(maps, (1, 0.25, 0.25, 1))
else:
maps_rescale = maps
cmap = plt.get_cmap('jet')
row = int(np.sqrt(num_samples))
merged = np.zeros([row * image_size, row * image_size * 2, 3])
for idx, map_small in enumerate(maps_small):
i = idx // row
j = idx % row
map_image_small = heat_maps_to_image(map_small, image_size=image_size, num_landmarks=num_landmarks)
map_image = heat_maps_to_image(maps_rescale[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
rgba_map_image = cmap(map_image)
map_image = np.delete(rgba_map_image, 3, 2) * 255
rgba_map_image_small = cmap(map_image_small)
map_image_small = np.delete(rgba_map_image_small, 3, 2) * 255
merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = map_image_small
merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image
return merged
def normalize_map(map_in):
return (map_in - map_in.min()) / (map_in.max() - map_in.min())
def map_to_rgb(map_gray):
cmap = plt.get_cmap('jet')
rgba_map_image = cmap(map_gray)
map_rgb = np.delete(rgba_map_image, 3, 2) * 255
return map_rgb
def load_art_data(img_list, batch_inds, image_size=256, c_dim=3, scale='255'):
num_inputs = len(batch_inds)
batch_menpo_images = img_list[batch_inds]
images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32')
for ind, img in enumerate(batch_menpo_images):
images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3)
if scale is '255':
images *= 255 # SAME AS ECT?
elif scale is '0':
images = 2 * images - 1
return images
def merge_images_landmarks_maps_gt(images, maps, maps_gt, image_size=256, num_landmarks=68, num_samples=9, scale='255',
circle_size=2, test_data='full', fast=False):
images = images[:num_samples]
if maps.shape[1] is not image_size:
images = zoom(images, (1, 0.25, 0.25, 1))
image_size /= 4
if maps_gt.shape[1] is not image_size:
maps_gt = zoom(maps_gt, (1, 0.25, 0.25, 1))
cmap = plt.get_cmap('jet')
row = int(np.sqrt(num_samples))
merged = np.zeros([row * image_size, row * image_size * 3, 3])
if fast:
maps_gt_images = np.amax(maps_gt, 3)
maps_images = np.amax(maps, 3)
for idx, img in enumerate(images):
i = idx // row
j = idx % row
img_landmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
if fast:
map_image = maps_images[idx]
else:
map_image = heat_maps_to_image(maps[idx, :, :, :], img_landmarks, image_size=image_size,
num_landmarks=num_landmarks)
rgba_map_image = cmap(map_image)
map_image = np.delete(rgba_map_image, 3, 2) * 255
if test_data not in ['full', 'challenging', 'common', 'training']:
map_gt_image = map_image.copy()
else:
if fast:
map_gt_image = maps_gt_images[idx]
else:
map_gt_image = heat_maps_to_image(maps_gt[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
rgba_map_gt_image = cmap(map_gt_image)
map_gt_image = np.delete(rgba_map_gt_image, 3, 2) * 255
img = create_img_with_landmarks(img, img_landmarks, image_size, num_landmarks, scale=scale,
circle_size=circle_size)
merged[i * image_size:(i + 1) * image_size, (j * 3) * image_size:(j * 3 + 1) * image_size, :] = img
merged[i * image_size:(i + 1) * image_size, (j * 3 + 1) * image_size:(j * 3 + 2) * image_size, :] = map_image
merged[i * image_size:(i + 1) * image_size, (j * 3 + 2) * image_size:(j * 3 + 3) * image_size, :] = map_gt_image
return merged
def map_comapre_channels(images,maps1, maps2, image_size=64, num_landmarks=68, scale='255',test_data='full'):
map1 = maps1[0]
map2 = maps2[0]
image = images[0]
if image.shape[0] is not image_size:
image = zoom(image, (0.25, 0.25, 1))
if scale is '1':
image *= 255
elif scale is '0':
image = 127.5 * (image + 1)
row = np.ceil(np.sqrt(num_landmarks)).astype(np.int64)
merged = np.zeros([row * image_size, row * image_size * 2, 3])
for idx in range(num_landmarks):
i = idx // row
j = idx % row
channel_map = map_to_rgb(normalize_map(map1[:, :, idx]))
if test_data not in ['full', 'challenging', 'common', 'training']:
channel_map2=channel_map.copy()
else:
channel_map2 = map_to_rgb(normalize_map(map2[:, :, idx]))
merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = channel_map
merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = channel_map2
i = (idx + 1) // row
j = (idx + 1) % row
merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = image
return merged
def train_val_shuffle_inds_per_epoch(valid_inds, train_inds, train_iter, batch_size, log_path, save_log=True):
np.random.seed(0)
num_train_images = len(train_inds)
num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1
epoch_inds_shuffle = np.zeros((num_epochs, num_train_images)).astype(int)
img_inds = np.arange(num_train_images)
for i in range(num_epochs):
np.random.shuffle(img_inds)
epoch_inds_shuffle[i, :] = img_inds
if save_log:
with open(os.path.join(log_path, "train_val_shuffle_inds.csv"), "wb") as f:
if valid_inds is not None:
f.write(b'valid inds\n')
np.savetxt(f, valid_inds.reshape(1, -1), fmt='%i', delimiter=",")
f.write(b'train inds\n')
np.savetxt(f, train_inds.reshape(1, -1), fmt='%i', delimiter=",")
f.write(b'shuffle inds\n')
np.savetxt(f, epoch_inds_shuffle, fmt='%i', delimiter=",")
return epoch_inds_shuffle
|