File size: 22,613 Bytes
dd38ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import numpy as np
import os
from scipy.io import loadmat
import cv2
from menpo.shape.pointcloud import PointCloud
from menpo.transform import ThinPlateSplines
import menpo.io as mio
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
from glob import glob
from deformation_functions import *

'''********* bounding box and image loading functions *********'''


def center_margin_bb(bb, img_bounds, margin=0.25):
    bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]])
    margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2

    bb_new = np.zeros_like(bb)
    bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0)
    bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1])
    bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0)
    bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0])
    return bb_new


def load_bb_files(bb_file_dirs):
    bb_files_dict = {}
    for bb_file in bb_file_dirs:
        bb_mat = loadmat(bb_file)['bounding_boxes']
        num_imgs = np.max(bb_mat.shape)
        for i in range(num_imgs):
            name = bb_mat[0][i][0][0][0][0]
            bb_init = bb_mat[0][i][0][0][1] - 1  # matlab indicies
            bb_gt = bb_mat[0][i][0][0][2] - 1  # matlab indicies
            if str(name) in bb_files_dict.keys():
                print str(name), 'already loaded from: ', bb_file
            bb_files_dict[str(name)] = (bb_init, bb_gt)
    return bb_files_dict


def load_bb_dictionary(bb_dir, mode, test_data='full'):
    if mode == 'TRAIN':
        bb_dirs = \
            ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
    else:
        if test_data == 'common':
            bb_dirs = \
                ['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
        elif test_data == 'challenging':
            bb_dirs = ['bounding_boxes_ibug.mat']
        elif test_data == 'full':
            bb_dirs = \
                ['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
        elif test_data == 'training':
            bb_dirs = \
                ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
        else:
            bb_dirs=None

    if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']:
        bb_files_dict = None
    else:
        bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs]
        bb_files_dict = load_bb_files(bb_dirs)

    return bb_files_dict


def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256):
    name = img.path.name
    img_bounds = img.bounds()[1]

    if bb_dictionary is None:
        bb_menpo = img.landmarks['PTS'].bounding_box().points
        bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]])
    else:
        if gt:
            bb = bb_dictionary[name][1]  # ground truth
        else:
            bb = bb_dictionary[name][0]  # init from face detector

    bb = center_margin_bb(bb, img_bounds, margin=margin)

    bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]],
                                         [bb[0, 3], bb[0, 0]],
                                         [bb[0, 3], bb[0, 2]],
                                         [bb[0, 1], bb[0, 2]]]))

    face_crop = img.crop_to_pointcloud(bb_pointcloud).resize([image_size, image_size])

    return face_crop


def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True):

    # taken from MDM
    jaw_indices = np.arange(0, 17)
    lbrow_indices = np.arange(17, 22)
    rbrow_indices = np.arange(22, 27)
    upper_nose_indices = np.arange(27, 31)
    lower_nose_indices = np.arange(31, 36)
    leye_indices = np.arange(36, 42)
    reye_indices = np.arange(42, 48)
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 68)

    mirrored_parts_68 = np.hstack([
        jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1],
        upper_nose_indices, lower_nose_indices[::-1],
        np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4),
        np.roll(outer_mouth_indices[::-1], 7),
        np.roll(inner_mouth_indices[::-1], 5)
    ])

    def mirror_landmarks_68(lms, im_size):
        return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector(
        ).reshape(-1, 2))[mirrored_parts_68])

    def mirror_image(im):
        im = im.copy()
        im.pixels = im.pixels[..., ::-1].copy()

        for group in im.landmarks:
            lms = im.landmarks[group]
            if lms.points.shape[0] == 68:
                im.landmarks[group] = mirror_landmarks_68(lms, im.shape)

        return im

    lim = image_size - crop_size
    min_crop_inds = np.random.randint(0, lim, 2)
    max_crop_inds = min_crop_inds + crop_size
    flip_rand = np.random.random() > 0.5
    rot_angle = 2 * angle_range * np.random.random_sample() - angle_range

    if flip and flip_rand:
        rand_crop = img.crop(min_crop_inds, max_crop_inds)
        rand_crop = mirror_image(rand_crop)
        rand_crop = rand_crop.rotate_ccw_about_centre(rot_angle).resize([image_size, image_size])

    else:
        rand_crop = img.crop(min_crop_inds, max_crop_inds). \
            rotate_ccw_about_centre(rot_angle).resize([image_size, image_size])

    return rand_crop


def load_menpo_image_list(img_dir, mode, bb_dictionary=None, image_size=256, margin=0.25, bb_type='gt',

                          test_data='full', augment=True):
    def crop_to_face_image_gt(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size):
        return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)

    def crop_to_face_image_init(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size):
        return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)

    if mode is 'TRAIN':
        img_set_dir = os.path.join(img_dir, 'training_set')

    else:
        img_set_dir = os.path.join(img_dir, test_data + '_set')

    image_menpo_list = mio.import_images(img_set_dir, verbose=True)

    if bb_type is 'gt':
        face_crop_image_list = image_menpo_list.map(crop_to_face_image_gt)
    else:
        face_crop_image_list = image_menpo_list.map(crop_to_face_image_init)

    if mode is 'TRAIN' and augment:
        out_image_list = face_crop_image_list.map(augment_face_image)
    else:
        out_image_list = face_crop_image_list

    return out_image_list


def augment_menpo_img_ns(img, img_dir_ns, p_ns=0):
    img = img.copy()
    texture_aug = p_ns > 0.5
    if texture_aug:
        ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '*'))
        num_augs = len(ns_augs)
        if num_augs > 1:
            ns_ind = np.random.randint(1, num_augs)
            ns_aug = mio.import_image(ns_augs[ns_ind])
            ns_pixels = ns_aug.pixels
            img.pixels = ns_pixels
    return img


def augment_menpo_img_geom(img, p_geom=0):
    img = img.copy()
    if p_geom > 0.5:
        lms_geom_warp=deform_face_geometric_style(img.landmarks['PTS'].points.copy(),p_scale=p_geom,p_shift=p_geom)
        img = warp_face_image_tps(img,PointCloud(lms_geom_warp))
    return img


def warp_face_image_tps(img,new_shape):
    tps = ThinPlateSplines(new_shape, img.landmarks['PTS'])
    img_warp=img.warp_to_shape(img.shape,tps)
    img_warp.landmarks['PTS']=new_shape
    return img_warp


def load_menpo_image_list_artistic_aug(

        img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,

        bb_type='gt', test_data='full',augment_basic=True, augment_texture=False, p_texture=0,

        augment_geom=False, p_geom=0):

    def crop_to_face_image_gt(img):
        return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)

    def crop_to_face_image_init(img):
        return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)

    def augment_menpo_img_ns_rand(img):
        return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() <= p_texture))

    def augment_menpo_img_geom_rand(img):
        return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() <= p_geom))

    if mode is 'TRAIN':
        img_set_dir = os.path.join(img_dir, train_crop_dir)
        out_image_list = mio.import_images(img_set_dir, verbose=True)

        if augment_texture:
            out_image_list = out_image_list.map(augment_menpo_img_ns_rand)
        if augment_geom:
            out_image_list = out_image_list.map(augment_menpo_img_geom_rand)
        if augment_basic:
            out_image_list = out_image_list.map(augment_face_image)

    else:
        img_set_dir = os.path.join(img_dir, test_data + '_set')
        out_image_list = mio.import_images(img_set_dir, verbose=True)
        if test_data in ['full', 'challenging', 'common', 'training', 'test']:
            if bb_type is 'gt':
                out_image_list = out_image_list.map(crop_to_face_image_gt)
            elif bb_type is 'init':
                out_image_list = out_image_list.map(crop_to_face_image_init)

    return out_image_list


def reload_img_menpo_list_artistic_aug_train(

        img_dir, train_crop_dir, img_dir_ns, mode, train_inds, image_size=256,

        augment_basic=True, augment_texture=False, p_texture=0, augment_geom=False, p_geom=0):

    img_menpo_list = load_menpo_image_list_artistic_aug(
        img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode,image_size=image_size,
        augment_basic=augment_basic, augment_texture=augment_texture, p_texture=p_texture, augment_geom=augment_geom,
        p_geom=p_geom)

    img_menpo_list_train = img_menpo_list[train_inds]

    return img_menpo_list_train


'''********* heat-maps and image loading functions *********'''


# look for: ECT-FaceAlignment/caffe/src/caffe/layers/data_heatmap.cpp
def gaussian(x, y, x0, y0, sigma=6):
    return 1./(np.sqrt(2*np.pi)*sigma) * np.exp(-0.5 * ((x-x0)**2 + (y-y0)**2) / sigma**2)


def create_heat_maps(landmarks, num_landmarks=68, image_size=256, sigma=6):

    x, y = np.mgrid[0:image_size, 0:image_size]

    maps = np.zeros((image_size, image_size, num_landmarks))

    for i in range(num_landmarks):
        out = gaussian(x, y, landmarks[i,0], landmarks[i,1], sigma=sigma)
        maps[:, :, i] = (8./3)*sigma*out  # copied from ECT

    return maps


def load_data(img_list, batch_inds, image_size=256, c_dim=3, num_landmarks=68 , sigma=6, scale='255',

              save_landmarks=False, primary=False):

    num_inputs = len(batch_inds)
    batch_menpo_images = img_list[batch_inds]

    images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32')
    maps_small = np.zeros([num_inputs, image_size/4, image_size/4, num_landmarks]).astype('float32')

    if primary:
        maps = None
    else:
        maps = np.zeros([num_inputs, image_size, image_size, num_landmarks]).astype('float32')

    if save_landmarks:
        landmarks = np.zeros([num_inputs, num_landmarks, 2]).astype('float32')
    else:
        landmarks = None

    for ind, img in enumerate(batch_menpo_images):

        images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3)

        if primary:
            lms = img.resize([image_size/4,image_size/4]).landmarks['PTS'].points
            maps_small[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size/4, sigma)
        else:
            lms = img.landmarks['PTS'].points
            maps[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size, sigma)
            maps_small[ind, :, :, :]=zoom(maps[ind, :, :, :],(0.25,0.25,1))

        if save_landmarks:
            landmarks[ind, :, :] = lms

    if scale is '255':
        images *= 255  # SAME AS ECT?
    elif scale is '0':
        images = 2 * images - 1

    return images, maps, maps_small, landmarks


def heat_maps_to_image(maps, landmarks=None, image_size=256, num_landmarks=68):

    if landmarks is None:
        landmarks = heat_maps_to_landmarks(maps, image_size=image_size, num_landmarks=num_landmarks)

    x, y = np.mgrid[0:image_size, 0:image_size]

    pixel_dist = np.sqrt(
        np.square(np.expand_dims(x, 2) - landmarks[:, 0]) + np.square(np.expand_dims(y, 2) - landmarks[:, 1]))

    nn_landmark = np.argmin(pixel_dist, 2)

    map_image = maps[x, y, nn_landmark]
    map_image = (map_image-map_image.min())/(map_image.max()-map_image.min())  # normalize for visualization

    return map_image


def heat_maps_to_landmarks(maps, image_size=256, num_landmarks=68):

    landmarks = np.zeros((num_landmarks,2)).astype('float32')

    for m_ind in range(num_landmarks):
        landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size))

    return landmarks


def batch_heat_maps_to_landmarks(batch_maps, batch_size, image_size=256, num_landmarks=68):
    batch_landmarks = np.zeros((batch_size,num_landmarks, 2)).astype('float32')
    for i in range(batch_size):
        batch_landmarks[i,:,:]=heat_maps_to_landmarks(
            batch_maps[i,:,:,:], image_size=image_size, num_landmarks=num_landmarks)

    return batch_landmarks


def print_training_params_to_file(init_locals):
    del init_locals['self']
    with open(os.path.join(init_locals['save_log_path'], 'Training_Parameters.txt'), 'w') as f:
        f.write('Training Parameters:\n\n')
        for key, value in init_locals.items():
            f.write('* %s: %s\n' % (key, value))


def create_img_with_landmarks(image, landmarks, image_size=256, num_landmarks=68, scale='255', circle_size=2):
    image = image.reshape(image_size, image_size, -1)

    if scale is '0':
        image = 127.5 * (image + 1)
    elif scale is '1':
        image *= 255

    landmarks = landmarks.reshape(num_landmarks, 2)
    landmarks = np.clip(landmarks, 0, image_size)

    for (y, x) in landmarks.astype('int'):
        cv2.circle(image, (x, y), circle_size, (255, 0, 0), -1)

    return image


def merge_images_landmarks_maps(images, maps, image_size=256, num_landmarks=68, num_samples=9, scale='255',

                                circle_size=2):
    images = images[:num_samples]
    if maps.shape[1] is not image_size:
        images = zoom(images, (1, 0.25, 0.25, 1))
        image_size /= 4
    cmap = plt.get_cmap('jet')

    row = int(np.sqrt(num_samples))
    merged = np.zeros([row * image_size, row * image_size * 2, 3])

    for idx, img in enumerate(images):
        i = idx // row
        j = idx % row

        img_lamdmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
        map_image = heat_maps_to_image(maps[idx, :, :, :], img_lamdmarks, image_size=image_size,
                                       num_landmarks=num_landmarks)

        rgba_map_image = cmap(map_image)
        map_image = np.delete(rgba_map_image, 3, 2) * 255

        img = create_img_with_landmarks(img, img_lamdmarks, image_size, num_landmarks, scale=scale,
                                        circle_size=circle_size)

        merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = img
        merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image

    return merged


def merge_compare_maps(maps_small, maps, image_size=64, num_landmarks=68, num_samples=9):

    maps_small = maps_small[:num_samples]
    maps = maps[:num_samples]

    if maps_small.shape[1] is not image_size:
        image_size = maps_small.shape[1]

    if maps.shape[1] is not maps_small.shape[1]:
        maps_rescale = zoom(maps, (1, 0.25, 0.25, 1))
    else:
        maps_rescale = maps

    cmap = plt.get_cmap('jet')

    row = int(np.sqrt(num_samples))
    merged = np.zeros([row * image_size, row * image_size * 2, 3])

    for idx, map_small in enumerate(maps_small):
        i = idx // row
        j = idx % row

        map_image_small = heat_maps_to_image(map_small, image_size=image_size, num_landmarks=num_landmarks)
        map_image = heat_maps_to_image(maps_rescale[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)

        rgba_map_image = cmap(map_image)
        map_image = np.delete(rgba_map_image, 3, 2) * 255

        rgba_map_image_small = cmap(map_image_small)
        map_image_small = np.delete(rgba_map_image_small, 3, 2) * 255

        merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = map_image_small
        merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image

    return merged


def normalize_map(map_in):
    return (map_in - map_in.min()) / (map_in.max() - map_in.min())


def map_to_rgb(map_gray):
    cmap = plt.get_cmap('jet')
    rgba_map_image = cmap(map_gray)
    map_rgb = np.delete(rgba_map_image, 3, 2) * 255
    return map_rgb


def load_art_data(img_list, batch_inds, image_size=256, c_dim=3, scale='255'):

    num_inputs = len(batch_inds)
    batch_menpo_images = img_list[batch_inds]

    images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32')

    for ind, img in enumerate(batch_menpo_images):
        images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3)

    if scale is '255':
        images *= 255  # SAME AS ECT?
    elif scale is '0':
        images = 2 * images - 1

    return images


def merge_images_landmarks_maps_gt(images, maps, maps_gt, image_size=256, num_landmarks=68, num_samples=9, scale='255',

                                   circle_size=2, test_data='full', fast=False):
    images = images[:num_samples]
    if maps.shape[1] is not image_size:
        images = zoom(images, (1, 0.25, 0.25, 1))
        image_size /= 4
    if maps_gt.shape[1] is not image_size:
        maps_gt = zoom(maps_gt, (1, 0.25, 0.25, 1))

    cmap = plt.get_cmap('jet')

    row = int(np.sqrt(num_samples))
    merged = np.zeros([row * image_size, row * image_size * 3, 3])

    if fast:
        maps_gt_images = np.amax(maps_gt, 3)
        maps_images = np.amax(maps, 3)

    for idx, img in enumerate(images):
        i = idx // row
        j = idx % row

        img_landmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)

        if fast:
            map_image = maps_images[idx]
        else:
            map_image = heat_maps_to_image(maps[idx, :, :, :], img_landmarks, image_size=image_size,
                                           num_landmarks=num_landmarks)
        rgba_map_image = cmap(map_image)
        map_image = np.delete(rgba_map_image, 3, 2) * 255

        if test_data not in ['full', 'challenging', 'common', 'training']:
            map_gt_image = map_image.copy()
        else:
            if fast:
                map_gt_image = maps_gt_images[idx]
            else:
                map_gt_image = heat_maps_to_image(maps_gt[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks)
            rgba_map_gt_image = cmap(map_gt_image)
            map_gt_image = np.delete(rgba_map_gt_image, 3, 2) * 255

        img = create_img_with_landmarks(img, img_landmarks, image_size, num_landmarks, scale=scale,
                                        circle_size=circle_size)

        merged[i * image_size:(i + 1) * image_size, (j * 3) * image_size:(j * 3 + 1) * image_size, :] = img
        merged[i * image_size:(i + 1) * image_size, (j * 3 + 1) * image_size:(j * 3 + 2) * image_size, :] = map_image
        merged[i * image_size:(i + 1) * image_size, (j * 3 + 2) * image_size:(j * 3 + 3) * image_size, :] = map_gt_image

    return merged


def map_comapre_channels(images,maps1, maps2, image_size=64, num_landmarks=68, scale='255',test_data='full'):
    map1 = maps1[0]
    map2 = maps2[0]
    image = images[0]

    if image.shape[0] is not image_size:
        image = zoom(image, (0.25, 0.25, 1))
    if scale is '1':
        image *= 255
    elif scale is '0':
        image = 127.5 * (image + 1)

    row = np.ceil(np.sqrt(num_landmarks)).astype(np.int64)
    merged = np.zeros([row * image_size, row * image_size * 2, 3])

    for idx in range(num_landmarks):
        i = idx // row
        j = idx % row
        channel_map = map_to_rgb(normalize_map(map1[:, :, idx]))
        if test_data not in ['full', 'challenging', 'common', 'training']:
            channel_map2=channel_map.copy()
        else:
            channel_map2 = map_to_rgb(normalize_map(map2[:, :, idx]))

        merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = channel_map
        merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = channel_map2

    i = (idx + 1) // row
    j = (idx + 1) % row
    merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = image

    return merged


def train_val_shuffle_inds_per_epoch(valid_inds, train_inds, train_iter, batch_size, log_path, save_log=True):
    np.random.seed(0)
    num_train_images = len(train_inds)
    num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1
    epoch_inds_shuffle = np.zeros((num_epochs, num_train_images)).astype(int)
    img_inds = np.arange(num_train_images)
    for i in range(num_epochs):
        np.random.shuffle(img_inds)
        epoch_inds_shuffle[i, :] = img_inds

    if save_log:
        with open(os.path.join(log_path, "train_val_shuffle_inds.csv"), "wb") as f:
            if valid_inds is not None:
                f.write(b'valid inds\n')
                np.savetxt(f, valid_inds.reshape(1, -1), fmt='%i', delimiter=",")
            f.write(b'train inds\n')
            np.savetxt(f, train_inds.reshape(1, -1), fmt='%i', delimiter=",")
            f.write(b'shuffle inds\n')
            np.savetxt(f, epoch_inds_shuffle, fmt='%i', delimiter=",")

    return epoch_inds_shuffle