File size: 9,928 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import numpy as np
import cv2
import matplotlib.pyplot as plt
import os
import random

def closest_node(xy, pts):
    #search the list of nodes for the one closest to node, return the name
    dist_2 = np.sqrt(np.sum((pts - np.array(xy).reshape((-1, 2)))**2, axis=1))
    if (dist_2[np.argmin(dist_2)] > 20):
        return -1
    return np.argmin(dist_2)


def draw_landmarks(img, pts, pc=(0,0,255), radius=2, lc=(0,255,0), thickness=2):

    for i in range(0, 16):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (0, 255, 0), thickness)
    for i in range(17, 21):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 0), thickness)
    for i in range(22, 26):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 0), thickness)
    for i in range(27, 35):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 255, 0), thickness)
    for i in range(36, 41):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 255), thickness)
    for i in range(42, 47):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 255), thickness)
    for i in range(48, 59):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 128, 0), thickness)
    for i in range(60, 67):
        cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])),
                     (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 128, 128), thickness)
    cv2.line(img, (int(pts[48, 0]), int(pts[48, 1])),
             (int(pts[59, 0]), int(pts[59, 1])), (255, 128, 0), thickness)
    cv2.line(img, (int(pts[60, 0]), int(pts[60, 1])),
             (int(pts[67, 0]), int(pts[67, 1])), (255, 128, 128), thickness)

    for i in range(68):
        cv2.circle(img, (int(pts[i, 0]), int(pts[i, 1])), radius, pc, -1)


def norm_anno(ROOT_DIR, CH, param=[0.75, 0.35, 0.6, 0.6], show=True):

    face_tmp = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth.txt'))  # .reshape(1, 204)
    try:
        face_tmp = face_tmp.reshape(68, 3)
    except:
        print('annotated face is not in correct size = [68 x 3]')
        exit(0)

    scale = 1.6 / (face_tmp[0, 0] - face_tmp[16, 0])
    shift = - 0.5 * (face_tmp[0, 0:2] + face_tmp[16, 0:2])
    face_tmp[:, 0:2] = (face_tmp[:, 0:2] + shift) * scale
    face_std = np.loadtxt(os.path.join(ROOT_DIR, 'STD_FACE_LANDMARKS.txt'))
    face_std = face_std.reshape(68, 3)

    face_tmp[:, -1] = face_std[:, -1]
    face_tmp[:, 0:2] = -face_tmp[:, 0:2]
    np.savetxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth_norm.txt'), face_tmp, fmt='%.4f')
    np.savetxt(os.path.join(ROOT_DIR, CH + '_scale_shift.txt'), np.array([scale, shift[0], shift[1]]), fmt='%.10f')

    # Force the frame to close mouth
    face_tmp[49:54, 1] = param[0] * face_tmp[49:54, 1] + (1-param[0]) * face_tmp[59:54:-1, 1]
    face_tmp[59:54:-1, 1] = param[1] * face_tmp[49:54, 1] + (1-param[1]) * face_tmp[59:54:-1, 1]
    face_tmp[61:64, 1] = param[2] * face_tmp[61:64, 1] + (1-param[2]) * face_tmp[67:64:-1, 1]
    face_tmp[67:64:-1, 1] = param[3] * face_tmp[61:64, 1] + (1-param[3]) * face_tmp[67:64:-1, 1]
    face_tmp[61:64, 0] = 0.6 * face_tmp[61:64, 0] + 0.4 * face_tmp[67:64:-1, 0]
    face_tmp[67:64:-1, 0] = 0.6 * face_tmp[61:64, 0] + 0.4 * face_tmp[67:64:-1, 0]

    np.savetxt(os.path.join(ROOT_DIR, CH + '_face_close_mouth.txt'), face_tmp, fmt='%.4f')

    std_face_id = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_close_mouth.txt'))  # .reshape(1, 204)
    std_face_id = std_face_id.reshape(68, 3)

    def vis_landmark_on_plt(fl, x_offset=0.0, show_now=True):
        def draw_curve(shape, idx_list, loop=False, x_offset=0.0, c=None):
            for i in idx_list:
                plt.plot((shape[i, 0] + x_offset, shape[i + 1, 0] + x_offset), (-shape[i, 1], -shape[i + 1, 1]), c=c)
            if (loop):
                plt.plot((shape[idx_list[0], 0] + x_offset, shape[idx_list[-1] + 1, 0] + x_offset),
                         (-shape[idx_list[0], 1], -shape[idx_list[-1] + 1, 1]), c=c)

        draw_curve(fl, list(range(0, 16)), x_offset=x_offset)  # jaw
        draw_curve(fl, list(range(17, 21)), x_offset=x_offset)  # eye brow
        draw_curve(fl, list(range(22, 26)), x_offset=x_offset)
        draw_curve(fl, list(range(27, 35)), x_offset=x_offset)  # nose
        draw_curve(fl, list(range(36, 41)), loop=True, x_offset=x_offset)  # eyes
        draw_curve(fl, list(range(42, 47)), loop=True, x_offset=x_offset)
        draw_curve(fl, list(range(48, 59)), loop=True, x_offset=x_offset, c='b')  # mouth
        draw_curve(fl, list(range(60, 67)), loop=True, x_offset=x_offset, c='r')
        draw_curve(fl, list(range(60, 64)), loop=False, x_offset=x_offset, c='g')

        if (show_now):
            plt.show()

    vis_landmark_on_plt(std_face_id, show_now=show)



# Check if a point is inside a rectangle
def rect_contains(rect, point):
    if point[0] < rect[0]:
        return False
    elif point[1] < rect[1]:
        return False
    elif point[0] > rect[2]:
        return False
    elif point[1] > rect[3]:
        return False
    return True


# Draw a point
def draw_point(img, p, color):
    cv2.circle(img, p, 2, color, -1, cv2.LINE_AA, 0)


# Draw delaunay triangles
def draw_delaunay(img, subdiv, delaunay_color):
    triangleList = subdiv.getTriangleList();
    size = img.shape
    r = (0, 0, size[1], size[0])

    for t in triangleList:

        pt1 = (t[0], t[1])
        pt2 = (t[2], t[3])
        pt3 = (t[4], t[5])

        if rect_contains(r, pt1) and rect_contains(r, pt2) and rect_contains(r, pt3):
            cv2.line(img, pt1, pt2, delaunay_color, 1, cv2.LINE_AA, 0)
            cv2.line(img, pt2, pt3, delaunay_color, 1, cv2.LINE_AA, 0)
            cv2.line(img, pt3, pt1, delaunay_color, 1, cv2.LINE_AA, 0)


# Draw voronoi diagram
def draw_voronoi(img, subdiv):
    (facets, centers) = subdiv.getVoronoiFacetList([])

    for i in range(0, len(facets)):
        ifacet_arr = []
        for f in facets[i]:
            ifacet_arr.append(f)
        ifacet = np.array(ifacet_arr, np.int)
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))

        cv2.fillConvexPoly(img, ifacet, color, cv2.LINE_AA, 0)
        ifacets = np.array([ifacet])
        cv2.polylines(img, ifacets, True, (0, 0, 0), 1, cv2.LINE_AA, 0)
        cv2.circle(img, (centers[i][0], centers[i][1]), 3, (0, 0, 0), -1, cv2.LINE_AA, 0)
    print("end of draw_voronoi")


def delauney_tri(ROOT_DIR, test_data, INNER_ONLY=False):
    # Define window names
    win_delaunay = "Delaunay Triangulation"
    cv2.namedWindow(win_delaunay, cv2.WINDOW_NORMAL)
    win_voronoi = "Voronoi Diagram"

    # Turn on animation while drawing triangles
    animate = True

    # Define colors for drawing.
    delaunay_color = (255, 255, 255)
    points_color = (0, 0, 255)

    # Read in the image.
    if (os.path.exists(os.path.join(ROOT_DIR, test_data))):
        img = cv2.imread(os.path.join(ROOT_DIR, test_data))
    else:
        print('not file founded.')
        exit(0)

    CH = test_data[:-4]
    # Keep a copy around
    img_orig = img.copy()

    # Rectangle to be used with Subdiv2D
    size = img.shape
    rect = (0, 0, size[1], size[0])

    # Create an array of points.
    points = []

    # Create an instance of Subdiv2D
    subdiv = cv2.Subdiv2D(rect)
    h = size[1] - 1
    w = size[0] - 1

    # Read in the points from a text file
    file = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth.txt'))
    file = file.reshape(68, 3)

    for i in range(file.shape[0]):
        if(INNER_ONLY):
            if(i >= 48 and i <= 59): ############## for inner lip only
                continue
        line = file[i]
        x, y, z = line
        points.append((int(float(x)), int(float(y))))


    points.append((0, 0))
    points.append((0, w // 4))
    points.append((0, w // 2))
    points.append((0, w // 4 * 3))
    points.append((0, w))
    points.append((h // 2, w))
    points.append((h, w))
    points.append((h, w // 2))
    points.append((h, 0))
    points.append((h // 4, 0))
    points.append((h // 2, 0))
    points.append((h // 4*3, 0))

    # Insert points into subdiv
    for p in points:
        print(p)
        subdiv.insert(p)

        # Show animation
        if animate:
            img_copy = img_orig.copy()
            # Draw delaunay triangles
            draw_delaunay(img_copy, subdiv, (255, 255, 0))
            cv2.imshow(win_delaunay, img_copy)
            cv2.waitKey(100)

    # Draw delaunay triangles
    draw_delaunay(img, subdiv, (255, 255, 0))
    triangleList = subdiv.getTriangleList()

    p_dict = {}  # Initialize empty dictionary.
    index = 0
    # Draw points
    for p in points:
        # draw_point(img, p, (0, 0, 255))
        p_dict[p] = index
        index = index + 1

    # Allocate space for voronoi Diagram
    img_voronoi = np.zeros(img.shape, dtype=img.dtype)

    # Draw voronoi diagram
    draw_voronoi(img_voronoi, subdiv)

    # Show results
    cv2.imshow(win_delaunay, img)
    print("Press any key to quit...")
    cv2.waitKey(0)

    new_tri = [];

    for line in triangleList:
        p1 = (line[0], line[1])
        p2 = (line[2], line[3])
        p3 = (line[4], line[5])

        try:
            p1_index = p_dict[p1]
            p2_index = p_dict[p2]
            p3_index = p_dict[p3]
        except:
            continue

        new_tri.append((p1_index, p2_index, p3_index))

    print(new_tri)

    a = np.array(new_tri).astype(int)
    np.savetxt(os.path.join(ROOT_DIR, CH + '_delauney_tri.txt'), a, fmt='%d')