Spaces:
Sleeping
Sleeping
File size: 9,612 Bytes
abbba03 66e5db6 abbba03 66e5db6 abbba03 c4727d5 abbba03 66e5db6 abbba03 66e5db6 abbba03 66e5db6 abbba03 5879508 abbba03 066e779 abbba03 6a2a50c abbba03 66e5db6 5879508 abbba03 afaf18f abbba03 066e779 abbba03 066e779 c4727d5 066e779 5879508 ed36f84 5879508 abbba03 e121fd7 abbba03 e121fd7 abbba03 6f97306 abbba03 66e5db6 abbba03 66e5db6 abbba03 66e5db6 5879508 66e5db6 71ef544 214f3ef 71ef544 66e5db6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from langchain.chains.summarize import load_summarize_chain
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.text_splitter import TokenTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.docstore.document import Document
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import BaseCallbackManager
from duckduckgo_search import DDGS
from itertools import islice
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish, LLMResult
from pydantic import BaseModel, Field
import requests
from bs4 import BeautifulSoup
from threading import Thread, Condition
from collections import deque
from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
from ..config import default_chuanhu_assistant_model
from ..presets import SUMMARIZE_PROMPT, i18n
from ..index_func import construct_index
from langchain.callbacks import get_openai_callback
import os
import gradio as gr
import logging
class GoogleSearchInput(BaseModel):
keywords: str = Field(description="keywords to search")
class WebBrowsingInput(BaseModel):
url: str = Field(description="URL of a webpage")
class WebAskingInput(BaseModel):
url: str = Field(description="URL of a webpage")
question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.")
class ChuanhuAgent_Client(BaseLLMModel):
def __init__(self, model_name, openai_api_key, user_name="") -> None:
super().__init__(model_name=model_name, user=user_name)
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
self.api_key = openai_api_key
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo", openai_api_base=os.environ.get("OPENAI_API_BASE", None))
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
self.index_summary = None
self.index = None
if "Pro" in self.model_name:
self.tools = load_tools(["serpapi", "google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
else:
self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm)
self.tools.append(
Tool.from_function(
func=self.google_search_simple,
name="Google Search JSON",
description="useful when you need to search the web.",
args_schema=GoogleSearchInput
)
)
self.tools.append(
Tool.from_function(
func=self.summary_url,
name="Summary Webpage",
description="useful when you need to know the overall content of a webpage.",
args_schema=WebBrowsingInput
)
)
self.tools.append(
StructuredTool.from_function(
func=self.ask_url,
name="Ask Webpage",
description="useful when you need to ask detailed questions about a webpage.",
args_schema=WebAskingInput
)
)
def google_search_simple(self, query):
results = []
with DDGS() as ddgs:
ddgs_gen = ddgs.text("notes from a dead house", backend="lite")
for r in islice(ddgs_gen, 10):
results.append({
"title": r["title"],
"link": r["href"],
"snippet": r["body"]
})
return str(results)
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown.update()
if files:
index = construct_index(self.api_key, file_src=files)
assert index is not None, "获取索引失败"
self.index = index
status = i18n("索引构建完成")
# Summarize the document
logging.info(i18n("生成内容总结中……"))
with get_openai_callback() as cb:
os.environ["OPENAI_API_KEY"] = self.api_key
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
llm = ChatOpenAI()
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"]
logging.info(f"Summary: {summary}")
self.index_summary = summary
chatbot.append((f"Uploaded {len(files)} files", summary))
logging.info(cb)
return gr.Files.update(), chatbot, status
def query_index(self, query):
if self.index is not None:
retriever = self.index.as_retriever()
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever)
return qa.run(query)
else:
"Error during query."
def summary(self, text):
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"]
def fetch_url_content(self, url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# 提取所有的文本
text = ''.join(s.getText() for s in soup.find_all('p'))
logging.info(f"Extracted text from {url}")
return text
def summary_url(self, url):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
text_summary = self.summary(text)
url_content = "webpage content summary:\n" + text_summary
return url_content
def ask_url(self, url, question):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
# use embedding
embeddings = OpenAIEmbeddings(openai_api_key=self.api_key, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
# create vectorstore
db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
return qa.run(f"{question} Reply in 中文")
def get_answer_at_once(self):
question = self.history[-1]["content"]
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
reply = agent.run(input=f"{question} Reply in 简体中文")
return reply, -1
def get_answer_stream_iter(self):
question = self.history[-1]["content"]
it = CallbackToIterator()
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
def thread_func():
tools = self.tools
if self.index is not None:
tools.append(
Tool.from_function(
func=self.query_index,
name="Query Knowledge Base",
description=f"useful when you need to know about: {self.index_summary}",
args_schema=WebBrowsingInput
)
)
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
try:
reply = agent.run(input=f"{question} Reply in 简体中文")
except Exception as e:
import traceback
traceback.print_exc()
reply = str(e)
it.callback(reply)
it.finish()
t = Thread(target=thread_func)
t.start()
partial_text = ""
for value in it:
partial_text += value
yield partial_text
|